精英家教网 > 高中数学 > 题目详情

【题目】已知全集U=R,集合A={x|x2+x>0},集合B= ,则(UA)∪B=(
A.[0,2)
B.[﹣1,0]
C.[﹣1,2)
D.(﹣∞,2)

【答案】C
【解析】解:集合A={x|x2+x>0}

={x|x>0或x<﹣1},

集合B=

={y|0<y<2},

则(UA)∪B={x|﹣1≤x≤0}∪{y|0<y<2}

=[﹣1,0]∪(0,2)=[﹣1,2).

故选:C.

【考点精析】认真审题,首先需要了解交、并、补集的混合运算(求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(Ⅰ)比较下列两组实数的大小: ① ﹣1与2﹣ ;②2﹣
(Ⅱ)类比以上结论,写出一个更具一般意义的结论,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)若函数 上是减函数,求实数 的取值范围;
(2)是否存在整数 ,使得 的解集恰好是 ,若存在,求出 的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:|x﹣a|<3(a为常数);q:代数式 有意义.
(1)若a=1,求使“p∧q”为真命题的实数x的取值范围;
(2)若p是q成立的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】画正六棱柱的直观图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元前300年欧几里得提出一种算法,该算法程序框图如图所示.若输入m=98,n=63,则输出的m=(
A.7
B.28
C.17
D.35

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,不能证明APBC的条件是(  )

A. APPBAPPC

B. APPBBCPB

C. 平面BPC⊥平面APCBCPC

D. AP⊥平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣k( +lnx),若x=2是函数f(x)的唯一一个极值点,则实数k的取值范围为(
A.(﹣∞,e]
B.[0,e]
C.(﹣∞,e)
D.[0,e)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,方程f2(x)﹣af(x)+b=0(b≠0)有六个不同的实数解,则3a+b的取值范围是(
A.[6,11]
B.[3,11]
C.(6,11)
D.(3,11)

查看答案和解析>>

同步练习册答案