【题目】体育测试成绩分为四个等级:优、良、中、不及格.某班50名学生参加测试结果如下:
等级 | 优(86~100分) | 良(75~85分) | 中(60~74分) | 不及格(1~59分) |
人数 | 5 | 21 | 22 | 2 |
(1)估计该班学生体育测试的平均成绩;
(2)从该班任意抽取1名学生,求这名学生的测试成绩为“优”或“良”的概率.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2ax3(a>0),x∈R.若对任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)f(x2)=1,则a的取值范围是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】长沙某公司对其主推产品在过去5个月的月广告投入xi(百万元)和相应的销售额yi(百万元)进行了统计,其中i=1,2,3,4,5,对所得数据进行整理,绘制散点图并计算出一些统计量如下:
68 | 10.3 | 15.8 | -192.12 | 1.602 | 0.46 | 3.56 |
其中,i=1,2,3,4,5.
(1)根据散点图判断,与哪一个适宜作为月销售额关于月广告投入xi的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及题中所给数据,建立y关于x的回归方程,并据此估计月广告投入200万元时的月销售额.
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】6名教师分配到3所薄弱学校去支教,每个学校至少分配一名教师,甲乙两人不能去同一所学校,丙丁两人必须去同一所学校,共有________种分配方案(用数字作答).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,梯形ABCD所在的平面与等腰梯形ABEF所在的平面互相垂直,AB∥CD∥EF,AB⊥AD,CD=DA=AF=FE=2,AB=4.
(1)求证:DF∥平面BCE;
(2)求二面角C—BF—A的正弦值;
(3)线段CE上是否存在点G,使得AG⊥平面BCF?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象关于直线对称,且图象上相邻两个最高点的距离为.
(1)求和的值;
(2)当时,求函数的最大值和最小值;
(3)设,若的任意一条对称轴与x轴的交点的横坐标不属于区间,求c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)求证:
(2)若函数的图象与直线没有交点,求实数的取值范围;
(3)若函数,则是否存在实数,使得的最小值为?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com