精英家教网 > 高中数学 > 题目详情
已知函数g(x)=ax2-2a+1+b(a>0)在区间[2,3]上头最大值4和最小值1,设f(x)=
g(x)
x

(1求a,b的值
(2)若不等式f(2x)-k.2x≥0在x∈[-1,1]有解,求实数k的取值范围.
考点:函数恒成立问题,二次函数在闭区间上的最值
专题:函数的性质及应用
分析:(1)依题意知,g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上递增,由即可求得a、b的值.
(2)由(1)知,f(x)=
g(x)
x
=x+
1
x
-2,设2x=t,k≤
f(t)
t
=
1
t2
-
1
t
+1,求出函数
1
t2
-
1
t
+1的大值即可
解答: 解:(1)g(x)=ax2-2ax+1+b=a(x-1)2+1+b-a,
∵a>0,
∴g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上递增,
g(2)=1•
g(3)=4
,即
4a-4a+1+b=1
9a-6a+1+b=4
解得
a=1
b=0

(2)由(1)知,g(x)=x2-2x+1,
∴f(x)=
g(x)
x
=
x2-2x+1
x
=x+
1
x
-2,
设2x=t,
∵x∈[-1,1],
∴t∈[
1
2
,2],
∵f(2x)-k.2x≥0在x∈[-1,1]有解,
∴f(t)-kt≥0在t∈[
1
2
,2]有解,
∴k≤
f(t)
t
=
1
t2
-
2
t
+1,
再令
1
t
=m,则m∈[
1
2
,2],
∴k≤m2-2m+1=(m-1)2
令h(m)=m2-2m+1,
∴h(m)max=h(2)=1,
∴k≤1,
故实数k的取值范围(-∞,1].
点评:本题考查函数的单调性质的应用,考查等价转化思想与运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对某电子元件进行寿命追踪调查,情况如下.
寿命/h100~200200~300300~400400~500500~600
个数2030804030
(1)完成下列频率分布表;
(2)在平面直角坐标系中画出频率分布直方图;
(3)估计元件寿命在100~400h以内的在总体中占的比例;
(4)估计电子元件寿命在400h以上的在总体中占的比例.
解:(1)完成频率分布表
分组频数频率
100~200
200~300
300~400
400~500
500~600
合计
(2)画出频率分布直方图

查看答案和解析>>

科目:高中数学 来源: 题型:

小明参加“欧洲六国游”旅行,其中A、B、C三国游览的先后顺序一定(游A、B、C三国的顺序可以相邻也可以不相邻)则小明“欧洲六国游”旅行共有(  )种不同的出游方法.
A、120B、180
C、240D、480

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是平行四边形,侧面PBC是等边三角形,平面PBC⊥平面ABCD,BC=2,AB=
2
,∠ABC=45°.
(1)求异面直线BD,PC所成角的余弦值;
(2)点E在线段PC上,AE与平面PAB所成角的正切值等于
33
11
,求
PE
PC
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+xlog26+log23=0的两根为α,β,则(
1
4
)
α
(
1
4
)
β
=(  )
A、
1
36
B、36
C、-6
D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1
2
x2-ax-
27
2x2
在(0,+∞)上是增函数,则实数a的最大值为(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知点D是BC边的三等分点且BD=
1
3
BC,过点D的直线分别交直线AB,AC于E,F两点,若
AE
AB
(λ>0),
AF
AC
(μ>0),则λ+2μ的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法不正确的是(  )
A、若“p且q”为假,则p、q至少有一个是假命题
B、命题“?x0∈R,x02-x0-1<0”的否定是“?x∈R,x2-x-1≥0”
C、“φ=
π
2
”是“y=sin(2x+φ)为偶函数”的充要条件
D、a<0时,幂函数y=xa在(0,+∞)上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l:
3
x-y-
3
=0,圆C:(x-3)2+y2=4,直线l与圆C交于A,B两点,则
AB
AC
等于(  )
A、2
B、3
C、4
D、2
3

查看答案和解析>>

同步练习册答案