A. | x1>x2 | B. | x1>|x2| | C. | x1<x2 | D. | x${\;}_{1}^{2}$>x${\;}_{2}^{2}$ |
分析 由于f(-x)=f(x),故函数f(x)=xsinx为偶函数,则f(x1)>f(x2)?f(|x1|)>f(|x2|),f′(x)=sinx+xcosx,当x>0时,f′(x)>0,从而可得答案.
解答 解:∵f(-x)=-xsin(-x)=xsinx=f(x),
∴函数f(x)=xsinx为偶函数,
∴f(-x)=f(|x|);
又f′(x)=sinx+xcosx,
∴当$\frac{π}{2}$>x>0时,f′(x)>0,
∴f(x)=xsinx在[0,$\frac{π}{2}$]上单调递增.
∵f(x1)>f(x2),结合偶函数的性质
∴f(|x1|)>f(|x2|),
∴|x1|>|x2|,
∴x12>x22,
故选:D.
点评 本题考查函数f(x)=xsinx的奇偶性与单调性,得到f(x)为偶函数,在[0,$\frac{π}{2}$]上单调递增是关键,考查分析转化能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | 4 | C. | 9 | D. | 11 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com