精英家教网 > 高中数学 > 题目详情

【题目】函数

1)设是函数的导函数,求的单调区间;

2)证明:当时,在区间上有极大值点,且

【答案】1)在上单调递减,在上单调递增;(2)详见解析.

【解析】

1)求导可得,继续求导得到,判断的正负,进而可得到的单调区间;(2)由(1)可知,上单调递减,结合时,,可以证明的极大值点,同时可以知道,而,所以有,再构造函数,利用导数可证明,即可得证.

解:(1)定义域为

上单调递减,在上单调递增.

2)由(1)可知上单调递减,∵,∴,设,∵,∴,∴,∴,使得时,时,,所以为函数的极大值点.

,即①,,当时,,且由(1)可知上单调递减,所以②,将①代入②整理得:,设,则,∴上单调递减,∴,所以当时,恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为,离心率为.

(1)求椭圆的方程;

(2)若动直线与椭圆有且仅有一个公共点,分别过两点作,垂足分别为,且记为点到直线的距离, 为点到直线的距离,为点到点的距离,试探索是否存在最大值.若存在,求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场推出消费抽现金活动,顾客消费满1000元可以参与一次抽奖,该活动设置了一等奖、二等奖、三等奖以及参与奖,奖金分别为:一等奖200元、二等奖100元、三等奖50元、参与奖20元,具体获奖人数比例分配如图,则下列说法中错误的是(

A.获得参与奖的人数最多

B.各个奖项中一等奖的总金额最高

C.二等奖获奖人数是一等奖获奖人数的两倍

D.奖金平均数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在斜三棱柱中,,侧面与底面ABC所成的二面角为EF分别是棱的中点.

(Ⅰ)证明:平面

(Ⅱ)求直线与底面ABC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,MNP分别是C1D1BCA1D1的中点,有下列四个结论:

APCM是异面直线;②APCMDD1相交于一点;③MNBD1

MN∥平面BB1D1D

其中所有正确结论的编号是(  )

A.①④B.②④C.①④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小学一班级1999级同学举行20周年聚会,该班共来了12位同学,其中女同学6位,聚会过程中有一个游戏环节,在游戏环节中,需要随机从中选出2位同学代表,进行男女搭配完成该项游戏,因此,每次选出的2位同学是一男一女,才算“有效选择”;否则视为“无效选择”,继续下一次选择,直到成为“有效选择”为止.

1)求第一次随机选出的2位同学是“有效选择”的概率;

2)设第一次选出的2位同学代表中女同学人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某晚会上某歌舞节目的表演者是3个女孩和4个男孩.演出结束后,7个人合影留念(3个人站在前排,4个人站在后排),其中男孩甲、乙要求站在一起,女孩丙不能站在两边,不同站法的种数为(

A.96B.240C.288D.432

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆的左右焦点,其焦距为,过的直线与交于两点,且的周长是.

1)求的方程;

2)若上的动点,从点(是坐标系原点)向圆作两条切线,分别交两点.已知直线的斜率存在,并分别记为.

)求证:为定值;

)试问是否为定值?若是,求出该值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某生鲜批发店每天从蔬菜生产基地以5元/千克购进某种绿色蔬菜,售价8元/千克,若每天下午4点以前所购进的绿色蔬菜没有售完,则对未售出的绿色蔬菜降价处理,以3元/千克出售.根据经验,降价后能够把剩余蔬菜全部处理完毕,且当天不再进货.该生鲜批发店整理了过往30天(每天下午4点以前)这种绿色蔬菜的日销售量(单位:千克)得到如下统计数据(视频率为概率)(注:x,y∈N*

每天下午4点前销售量

350

400

450

500

550

天数

3

9

x

y

2

(1)求在未来3天中,至少有1天下午4点前的销售量不少于450千克的概率.

(2)若该生鲜批发店以当天利润期望值为决策依据,当购进450千克比购进500千克的利润期望值大时,求x的取值范围.

查看答案和解析>>

同步练习册答案