(本小题满分12分)
设,且,定义在区间内的函数是奇函数.
(1)求的取值范围;
(2)讨论函数的单调性并证明.
(1). (2)在(-b,b)内是减函数,具有单调性.
【解析】
试题分析:(1)由函数f(x)在区间(-b,b)是奇函数,知f(-x)=-f(x),x∈(-b,b)上恒成立,用待定系数法求得a;同时函数要有意义,即>0,x∈(-b,b)上恒成立,可解得结果.
(2)选用定义法求解,先任意取两个变量且界定大小,再作差变形看符号.
解 (1)是奇函数等价于:
对任意都有…………………2分
(1)式即为,由此可得,也即,…………………4分
此式对任意都成立相当于,因为,所以,
代入②式,得>0,即,此式对任意都成立相当于,…………………6分
所以的取值范围是.…………………7分
(2)设任意的,且,由,得,
所以…………………9分
从而
因此在(-b,b)内是减函数,具有单调性. …………………12分
考点:本试题主要考查了函数的奇偶性,还考查了用定义法证明函数的单调性的运用。
点评:解决该试题的关键是要注意定义域优先考虑原则,以及作差时的变形要到位,要用上两个变量的大小关系。
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com