【题目】如图,是底面边长为1的正三棱锥,分别为棱长上的点,截面底面,且棱台与棱锥的棱长和相等.(棱长和是指多面体中所有棱的长度之和)
(1)证明:为正四面体;
(2)若,求二面角的大小;(结果用反三角函数值表示)
(3)设棱台的体积为,是否存在体积为且各棱长均相等的直平行六面体,使得它与棱台有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.
(注:用平行于底的截面截棱锥,该截面与底面之间的部分称为棱台,本题中棱台的体积等于棱锥的体积减去棱锥的体积.)
【答案】(1)证明见解析;(2);(3)存在,证明见解析.(注:所构造直平行六面体不唯一,只需题目满足要求即可)
【解析】
(1)根据棱长和相等可知,根据面面平行关系和棱锥为正三棱锥可证得,进而证得各棱长均相等,由此得到结论;(2)取的中点,连接,根据等腰三角形三线合一的性质和线面垂直判定定理可证得平面,由线面垂直性质可知,从而得到即为所求二面角的平面角;易知,从而得到,在中根据长度关系可求得,从而得到结果;(3)设直平行六面体的棱长均为,底面相邻两边夹角为,根据正四面体体积为,可验证出;又所构造六面体体积为,知,只需满足即可满足要求,从而得到结果.
(1)棱台与棱锥的棱长和相等
平面平面,三棱锥为正三棱锥
为正四面体
(2)取的中点,连接
, ,
平面, 平面
平面
为二面角的平面角
由(1)知,各棱长均为
为中点
即二面角的大小为:
(3)存在满足题意的直平行六面体,理由如下:
棱台的棱长和为定值,体积为
设直平行六面体的棱长均为,底面相邻两边夹角为
则该六面体棱长和为,体积为
正四面体体积为:
时,满足要求
故可构造棱长均为,底面相邻两边夹角为的直平行六面体即可满足要求
科目:高中数学 来源: 题型:
【题目】甲乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.
(1)求甲同学至少有4次投中的概率;
(2)求乙同学投篮次数的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某示范性高中的校长推荐甲、乙、丙三名学生参加某大学自主招生考核测试,在本次考核中只有合格和优秀两个等级.若考核为合格,授予10分降分资格;考核为优秀, 授予20分降分资格.假设甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等级相互独立.
(1)求在这次考核中,甲、乙、丙三名学生至少有一名考核为优秀的概率;
(2)记在这次考核中甲、乙、丙三名学生所得降分之和为随机变量ξ,求随机变量ξ的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上件产品作为样本算出他们的重量(单位:克)重量的分组区间为,,……,由此得到样本的频率分布直方图,如图所示.
(1)根据频率分布直方图,求重量超过克的产品数量.
(2)在上述抽取的件产品中任取件,设为重量超过克的产品数量,求的分布列.
(3)从流水线上任取件产品,求恰有件产品合格的重量超过克的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,不过原点的直线与椭圆交于A、B两点.
(1)求面积的最大值.
(2)是否存在椭圆,使得对于椭圆的每一条切线与椭圆均相交,设交于A、B两点,且恰取最大值?若存在,求出该椭圆;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com