试题分析:本题主要考查导数的运算、利用导数求曲线的切线方程、利用导数判断函数的单调性、利用导数求函数的最值和极值、向量垂直的充要条件等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,对
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054825888447.png)
求导,将切点的横坐标1代入到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826153466.png)
中得到切线的斜率,代入到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054825888447.png)
中得到切点的纵坐标,从而利用点斜式得到切线方程;第二问,先求函数的定义域,令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826184535.png)
,得到方程的根,将定义域断开,判断函数的单调性,从而求出函数极值;第三问,先排除几个特例情况,在一般情况中,要证明三角形为直角三角形,只需判断2边垂直,用向量垂直的充要条件证明即可.
试题解析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826200733.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826215525.png)
,又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826231502.png)
,所以曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054825841562.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054825857323.png)
处的切线方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826293693.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826013640.png)
.
(2)(ⅰ)对于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826200733.png)
,定义域为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826356405.png)
.
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826371451.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826387414.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826403460.png)
,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826418823.png)
;
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826434347.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826449621.png)
;当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826465372.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826496429.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826574471.png)
,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826590830.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054825888447.png)
存在唯一的极值点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826637253.png)
,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826075404.png)
,则点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826106289.png)
为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826683447.png)
(ⅱ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826699392.png)
,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826730748.png)
,与条件
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054825950746.png)
不符,
从而得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826761401.png)
.同理可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826777428.png)
.
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826808424.png)
,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826824937.png)
,与条件
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054825950746.png)
不符,从而得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826855423.png)
.
由上可得点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826091300.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826091309.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826106289.png)
两两不重合.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240548269171128.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240548269491373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240548269951026.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054827011287.png)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054827042495.png)
,点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826091300.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826091309.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054826106289.png)
可构成直角三角形.