精英家教网 > 高中数学 > 题目详情
18.若f(x)=$\left\{\begin{array}{l}{2-x,x≤1}\\{2x,x>1}\end{array}\right.$,则f(1)的值为(  )
A.-1B.0C.1D.2

分析 将x=1代入分段函数求得.

解答 解:f(1)=2-1=1.
故选:C.

点评 本题考查了分段函数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系中第一,二象限不同点的个数为(  )
A.18B.14C.16D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,角A,B、C的对边分别为a,b,c,且向量$\overrightarrow{m}$=(sin(A-B),a2-b2)与向量$\overrightarrow{n}$=(sin(A+B),a2+b2)共线,若角c=120°,则角A=30°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,在△ABC中,∠ACB的平分线CD交AB于D,$\overrightarrow{AC}$的模为2,$\overrightarrow{BC}$的模为3,$\overrightarrow{AD}$的模为1,那么$\overrightarrow{DB}$的模为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}的通项an=2n+1,bn=$\frac{1}{n}$(a1+a2+…+an),则{bn}的前n项和为$\frac{1}{2}$n(n+5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=cosx-x2在[-$\frac{π}{4}$,$\frac{π}{4}$]上的值域是[$\frac{\sqrt{2}}{2}$-$\frac{{π}^{2}}{16}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=$\sqrt{lo{g}_{0.5}tanx}$的定义域为{x|$kπ<x≤kπ+\frac{π}{4}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列各三角函数值:
(1)sin3π;
(2)sin18π;
(3)cos5π;
(4)cos25π;
(5)sin$\frac{9π}{2}$;
(6)sin$\frac{13π}{3}$;
(7)cos$\frac{47π}{2}$;
(8)cos$\frac{103π}{4}$;
(9)tan$\frac{37π}{6}$;
(10)tan$\frac{17π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.(1)已知l1:3x+2ay-5=0,l2:(3a-1)x-ay-2=0,则使l1∥l2的a的值为-$\frac{1}{6}$.
(2)作直线l:y=x上的点P(2,2),作直线m,若直线1,m与x轴围成的三角形的面积为2,则直线m的方程为x-2=0或x-2y+2=0.

查看答案和解析>>

同步练习册答案