精英家教网 > 高中数学 > 题目详情
9.某超市计划每天购进某商品若干件,该超市每销售一件该商品可获利润80元,若供大于求,剩余商品全部退回,但每件商品亏损20元;若供不应求,则从外部调剂,此时每件调剂商品可获利40元.
(Ⅰ)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;
(Ⅱ)商店记录了50天该商品的日需求量n(单位:件,n∈N),整理得下表:
日需求量789101112
频数571014104
若商店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[800,900]内的概率.

分析 (Ⅰ)分类求出函数解析式,即可得出利润y关于需求量n的函数解析式;
(Ⅱ)利润在区间[800,900]内,日需求量为10、11、12,其对应的频数分别为14、10、4,即可求出概率.

解答 解:(Ⅰ)当日需求量n≥10时,
利润为y=80×10+(n-10)×40=40n+400; …(2分)
当日需求量n<10时,利润为y=80n-(10-n)×20=100n-200.…(4分)
所以利润y关于需求量n的函数解析式为y=$\left\{\begin{array}{l}{40n+400,n≥10,n∈N}\\{100n-200,n<10,n∈N}\end{array}\right.$…(6分)
(Ⅱ)50天内有5天获得的利润为500元,有7天获得的利润为600元,有10天获得的利润为700元,有14天获得的利润为800元,有10天获得的利润为840元,有4天获得的利润为880元.…(9分)
若利润在区间[800,900]内,日需求量为10、11、12,其对应的频数分别为14、10、4.…(10分)
则利润在区间[800,900]内的概率为$\frac{14+10+4}{50}$=0.56.        …(12分)

点评 本题考查了运用概率知识求解实际问题的利润问题,仔细阅读题意,得出有用的数据,理清关系,正确代入数据即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设随机变量X~N(2,1),则P(|X|<1)=(  )
附:(若随机变量ξ~N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%,P(μ-3σ<ξ<μ+3σ)=99.72%)
A.13.59%B.15.73%C.27.18%D.31.46%

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.双曲线M:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,直线x=a与双曲线M渐近线交于点P,若sin∠PF1F2=$\frac{1}{3}$,则该双曲线的离心率为$\frac{9}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={x∈N|,0≤x≤2},B={x∈N|1≤x≤3},则A∪B=(  )
A.{1,2}B.{0,1,2,3}C.{x|1≤x≤2}D.{x|0≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若从2个滨海城市和2个内陆城市中随机选取1个取旅游,那么恰好选1个滨海城市的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-1,1),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为(  )
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.-$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,曲线C由左半椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0,x≤0)和圆N:(x-2)2+y2=5在y轴右侧的部分连接而成,A,B是M与N的公共点,点P,Q(均异于点A,B)分别是M,N上的动点.
(1)若|PQ|的最大值为4+$\sqrt{5}$,求半椭圆M的方程;
(2)若直线PQ过点A,且$\overrightarrow{AQ}$=-2$\overrightarrow{AP}$,$\overrightarrow{BP}$⊥$\overrightarrow{BQ}$,求半椭圆M的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.大学生小王自主创业,在乡下承包了一块耕地种植某种水果,每季投入2万元,根据以往的经验,每季收获的此种水果能全部售完,且水果的市场价格和这块地上的产量具有随机性,互不影响,具体情况如表:
水果产量(kg)30004000
概率0.40.6
水果市场价格(元/kg)1620
概率0.50.5
(Ⅰ)设X表示在这块地种植此水果一季的利润,求X的分布列及期望;
(Ⅱ)在销售收入超过5万元的情况下,利润超过5万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若${z_1},{z_2}∈C,{z_1}•\overline{z_2}+\overline{z_1}•{z_2}$是(  )
A.纯虚数B.实数C.虚数D.以上都有可能

查看答案和解析>>

同步练习册答案