精英家教网 > 高中数学 > 题目详情
如图,在长方体ABCD-A1B1C1D1中AA1=AD=1,E为CD中点.
(1)在棱AA1上是否存在一点P,使得DP平面B1AE?若存在,求AP的长;若不存在,说明理由.
(2)若二面角A-B1E-A1的大小为30°,求AB的长.
(1)分别以AB,AD,AA1为x轴、y轴、z轴建立空间直角坐标系,
假设在棱AA1上存在一点P(0,0,z0)使得DP平面B1AE.此时
DP
=(0,-1,z0)

又设AB的长度为a,平面B1AE的法向量
n
=(x,y,z)
,则
AB1
=(a,0,1),
AE
=(
a
2
,1,0)

n
平面B1AE,∴
n
AB1
n
AE

ax+z=0
ax
2
+y=0

取x=1,使得平面B1AE的一个法向量
n
=(1,
-a
2
,-a)
…(3分)
要使DP平面B1AE,只要
n
DP
,有
a
2
-az0=0
,解得z0=
1
2

又DP?平面B1AE,∴存在点P,满足DP平面B1AE,此时AP=
1
2
.…(6分)
(2)连接A1D,B1C,由长方体ABCD-A1B1C1D1及AA1=AD=1得AD1⊥A1D
∵B1CA1D,∴AD1⊥B1C
又由(1)知B1E⊥AD1,且B1C∩B1E=B1
∴AD1⊥平面DCB1A1
AD1
是平面A1B1E的一个法向量,此时
AD1
=(0,1,1)
…(9分)
AD1
n
所成的角为θ,则cosθ=
n
AD1
|
n
|•|
AD1
|
=
-
a
2
-a
2
1+
a2
4
+a2

∵二面角A-B1E-A1的大小为30°
∴|cosθ|=cos30°,即
3a
2
2
1+
5a2
4
=
3
2
,解得a=2,即AB的长为2.…(13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

正方体ABCDA1B1C1D1中,在所有的棱、面对角线、体对角线中,与AB垂直的线段的条数是(  )
A.7条B.12条C.16条D.18条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABCA1B1C1的底面ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.
(1)求
BN
的模;
(2)求异面直线BA1与CB1所成角的余弦值;
(3)求证:A1B⊥C1M.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点H在正方体ABCD-A′B′C′D′的对角线B′D′上,∠HDA=60°.
(Ⅰ)求DH与CC′所成角的大小;
(Ⅱ)求DH与平面AA′D′D所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是(
3
2
1
2
,0
),点D在平面yOz上,且∠BDC=90°,∠DCB=30°.
(I)求向量
OD
的坐标;
(Ⅱ)设向量
AD
BC
的夹角为θ,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的点,且CE=1.
(1)求证BE⊥B1C;
(2)求直线A1B与直线B1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱A1B1C1-ABC中,A1A⊥平面ABC,A1A=AB=AC,AB⊥AC,点D是BC上一点,且AD⊥C1D.
(1)求证:平面ADC1⊥平面BCC1B1
(2)求证:A1B平面ADC1
(3)求二面角C-AC1-D大小的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,F是PD的中点,E是线段AB上的点.
(Ⅰ)当E是AB的中点时,求证:AF平面PEC;
(Ⅱ)要使二面角P-EC-D的大小为45°,试确定E点的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面向量, 且, 则 (     )
A.B.C.D.

查看答案和解析>>

同步练习册答案