精英家教网 > 高中数学 > 题目详情
过圆(x+1)2+(y-2)2=4上一点(1,2)的切线方程是
 
考点:圆的切线方程
专题:直线与圆
分析:求出圆心与已知点确定直线方程的斜率,利用两直线垂直时斜率的乘积为-1(如果斜率为0,则垂线的斜率不存在)求出过此点切线方程的斜率,即可确定出切线方程.
解答: 解:∵(x+1)2+(y-2)2=4的圆心(-1,2)半径为:2.
过(-1,2)与(1,2)直线斜率为0,
∴过(1,2)切线方程的斜率不存在,
则所求切线方程为x=1,
故答案为:x=1.
点评:此题考查了直线与圆的位置关系,涉及的知识有:两直线垂直时斜率满足的关系,以及直线的点斜式方程,找出切线方程的斜率是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

惠州市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练都从中任意取出2个球,用完后放回.
(1)设第一次训练时取到的新球个数为ξ,求ξ的分布列和数学期望;
(2)已知第一次训练时用过的球放回后都当作旧球,求第二次训练时恰好取到1个新球的概率.
参考公式:互斥事件加法公式:P(A∪B)=P(A)+P(B)(事件A与事件B互斥).
独立事件乘法公式:P(A∩B)=P(A)•P(B)(事件A与事件B相互独立).
条件概率公式:P(B|A)=
P(AB)
P(A)

查看答案和解析>>

科目:高中数学 来源: 题型:

同时投两个相同的骰子,分别标有数字1、2、3、4、5、6,结果正面朝上的两个数相乘的积不小于20的情形有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

i是虚数单位,复数z=
-1-2i
2-i
+1+2i在复平面上的对应点在(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1•a2•a3…an=n2,则
a3
a5
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4x
2+4x

(1)证明:y=f(x)的图象关于点P(
1
2
1
2
)对称;
(2)求f(-100)+f(-99)+…+f(101);
(3)求f(
0
n
)+f(
1
n
)+…+f(
n-1
n
)+f(
n
n
)(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|logax|-(
1
2
x(a>0且a≠1)有两个零点x1、x2,则有(  )
A、0<x1x2<1
B、x1x2=1
C、x1x2>1
D、x1x2的范围不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=4sin(
2x
3
+
π
6
)-3.
(1)当x∈[0,π],求f(x)的值域;
(2)求f(x)的增区间;
(3)说明函数f(x)=4sin(
2x
3
+
π
6
)-2是由函数y=sinx的图象经过怎样的变换得到的?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
4
(x+1)2,若存在t∈R,只要x∈[1,m](m>1),就有f(x+t)≤x,则m的最大值是
 

查看答案和解析>>

同步练习册答案