精英家教网 > 高中数学 > 题目详情
精英家教网如图,四边形ABCD是等腰梯形,AB∥CD,且AD=CD=1.由4个这样的等腰梯形可以拼出图乙所示的平行四边形,则该平行四边形的面积为
 
分析:由于上底和两腰长已知,故要求梯形面积,关键是要找出底边上和高,由于图形中无法再分析出边与边的关系,所以我们可以从角的方向入手,求梯形的内角,进一步求出梯形的其它未知边长,进而求解平行四边形的面积.
解答:解:设等腰梯形的底角为θ,
则由图可知,θ+θ+θ=180°,即θ=60°.
由AD=CD=1知,
AB=CD+2AD•cos60°=2,
故梯形的面积为
1
2
(CD+AB)•ADsin60°
=
1
2
(1+2)•1•
3
2
=
3
3
4

故平行四边形的面积为4•
3
3
4
=3
3

故答案为:3
3
点评:本小题主要考查梯形与平行四边形的有关知识,以及分析问题和解决问题的能力,以及转化与化归的思想方法.本题的切入点是求梯形的内角,如何由已知分析出该点,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,A′A⊥平面ABCD.
(1) 求证:A′C∥平面BDE;
(2) 求证:平面A′AC⊥平面BDE
(3) 求平面BDE与平面ABCD所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(Ⅰ)证明PQ⊥平面DCQ;
(Ⅱ)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为矩形,且AD=2,AB=1,PA⊥平面ABCD,PA=1,E为BC的中点.
(1)求点C到面PDE的距离;  
(2)求二面角P-DE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD
128°
128°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角D-PQ-C的余弦值.

查看答案和解析>>

同步练习册答案