精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知AB是⊙O的直径,AC是弦,AD⊥CE,垂足为D,AC平分∠BAD.
(Ⅰ)求证:直线CE是⊙O的切线;
(Ⅱ)求证:AC2=AB•AD.
分析:(I)连接OC,利用△OAC为等腰三角形,结合同角的余角相等,我们易结合AD⊥CE,得到OC⊥DE,根据切线的判定定理,我们易得到结论;
(II)连接BC,我们易证明△ABC∽△ACD,然后相似三角形性质,相似三角形对应边成比例,易得到结论.
解答:精英家教网证明:(Ⅰ)连接OC,如下图所示:
因为OA=OC,
所以∠OCA=∠OAC.(2分)
又因为AD⊥CE,
所以∠ACD+∠CAD=90°,
又因为AC平分∠BAD,
所以∠OCA=∠CAD,(4分)
所以∠OCA+∠CAD=90°,
即OC⊥CE,
所以CE是⊙O的切线.(6分)
(Ⅱ)连接BC,
因为AB是⊙O的直径,
所以∠BCA=∠ADC=90°,
因为CE是⊙O的切线,
所以∠B=∠ACD,(8分)
所以△ABC∽△ACD,
所以
AC
AB
=
AD
AC

即AC2=AB•AD.(10分)
点评:本题考查的知识点是圆的切线的判定定理,判断切线有两种思路,一是过圆上一点,证明直线与过该点的直径垂直;一是过圆心作直线的垂线,证明垂足在圆上.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网选做题
如图,已知AB是⊙O的直径,AC是弦,AD⊥CE,垂足为D,AC平分∠BAD.
(Ⅰ)求证:直线CE是⊙O的切线;(Ⅱ)求证:AC2=AB•AD.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的一条弦,点P为AB上一点,PC⊥OP,PC交⊙O于C,若AP=4,PB=2,则PC的长是(  )
A、3
B、2
2
C、2
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB是⊙O的直径,点C是⊙O上的动点(异于A、B),过动点C的直线VC垂直于⊙O所在的平面,D,E分别是VA,VC的中点.
(1)求证:直线ED⊥平面VBC;
(2)若VC=AB=2BC,求直线EO与平面VBC所成角大小的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.
(Ⅰ)求证:AD⊥CD;
(Ⅱ)若AD=2,AC=
5
,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,OA=2.
(1)求证:DC是⊙O的切线;
(2)求AD•OC的值;
(3)若AD+OC=9,求CD的长.

查看答案和解析>>

同步练习册答案