精英家教网 > 高中数学 > 题目详情
4.已知f(x)=|ax+1|(a∈R),不等式f(x)>5的解集为{x|x>2或x<-3}.
(I)求a的值;
(Ⅱ)若不等式f(x)-f($\frac{x}{2}$)≤k在R上有解,求k的取值范围.

分析 (I)由题意知2,-3是方程|ax+1|=5的解,从而解得.
(Ⅱ)化简f(x)-f($\frac{x}{2}$)=$\left\{\begin{array}{l}{-x,x≤-1}\\{-3x-2,-1<x<-\frac{1}{2}}\\{x,x≥-\frac{1}{2}}\end{array}\right.$,从而可确定函数的单调性及最值,从而确定答案.

解答 解:(I)∵不等式f(x)>5的解集为{x|x>2或x<-3},
∴2,-3是方程|ax+1|=5的解,
∴$\left\{\begin{array}{l}{|2a+1|=5}\\{|-3a+1|=5}\end{array}\right.$,
解得,a=2;
(Ⅱ)∵f(x)-f($\frac{x}{2}$)=|2x+1|-|x+1|
=$\left\{\begin{array}{l}{-x,x≤-1}\\{-3x-2,-1<x<-\frac{1}{2}}\\{x,x≥-\frac{1}{2}}\end{array}\right.$,
∴f(x)在(-∞,-$\frac{1}{2}$]上是减函数,在(-$\frac{1}{2}$,+∞)上是增函数;
∴f(x)≥f(-$\frac{1}{2}$)=-$\frac{1}{2}$,
∴若使不等式f(x)-f($\frac{x}{2}$)≤k在R上有解,
只需使k≥$-\frac{1}{2}$.

点评 本题考查了不等式与方程的关系应用及分段函数的应用,同时考查了函数的单调性及最值的确定.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知椭圆C过点P(2,2$\sqrt{2}$),且与椭圆$\frac{{x}^{2}}{40}$+$\frac{{y}^{2}}{13}$=1有相同的焦点.
(1)求椭圆C的标准方程;
(2)若椭圆C上存在A、B两点关于直线l:y=x+m对称,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.不等式$|\begin{array}{l}{{4}^{x}}&{5}\\{{2}^{x}}&{4}\end{array}|$>-1的解集是(-∞,-2)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.集合A={y|y=1-x-$\frac{4}{x}$},集合B={x|x2-(3+a)x+3a≤0},若A∩B=[5,6],求实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设等比数列{zn},其中z1=1,z2=a+bi,z3=b+ai(a,b∈R,且a>0).
(1)求a,b的值;
(2)试求使z1+z2+…十zn=0最小的正整数n;
(3)对(2)中的正整数n,求z1•z2•…•z12的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为A(2,0),且焦距为2,直线l交椭圆于E、F两点(E、F与A点不重合),且满足AE⊥AF.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)O为坐标原点,若点P满足2$\overrightarrow{OP}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$,求直线AP的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.圆x2+(y-5)2=25的圆心到直线3x+4y-5=0的距离等于(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若命题“对于任意实数x,都有x2+x-4a>0且x2-2ax+1>0”是假命题,则实数a的取值范围是a≥1或a≤$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a-a-1=1,求a18+323a-6的值.

查看答案和解析>>

同步练习册答案