精英家教网 > 高中数学 > 题目详情
20.曲线y=sinx(0≤x≤π)与直线$y=\frac{1}{2}$围成的封闭图形的面积是$\sqrt{3}$-$\frac{π}{3}$.

分析 先确定积分区间,再确定被积函数,进而求定积分,即可求得曲线y=sinx(0≤x≤π)与直线y=$\frac{1}{2}$围成的封闭图形的面积.

解答 解:令sinx=$\frac{1}{2}$(0≤x≤π),则x∈[$\frac{π}{6}$,$\frac{5π}{6}$],
∴曲线y=sinx(0≤x≤π)与直线y=$\frac{1}{2}$围成的封闭图形的面积是${∫}_{\frac{π}{6}}^{\frac{5π}{6}}$(sinx-$\frac{1}{2}$)=(-cosx-$\frac{x}{2}$)${|}_{\frac{π}{6}}^{\frac{5π}{6}}$ 
=(-cos$\frac{5π}{6}$-$\frac{5π}{12}$)-(-cos$\frac{π}{6}$-$\frac{π}{12}$)=$\sqrt{3}$-$\frac{π}{3}$.
故答案:$\sqrt{3}-\frac{π}{3}$.

点评 本题考查利用定积分求面积,解题的关键是确定积分区间与被积函数,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知公比不为1的等比数列{an}的前n项和为Sn,S6=$\frac{63}{32}$,且-a2,a4,3a3成等差数列.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,∠A,∠B,∠C所对边的长分别为a,b,c.已知a+$\sqrt{2}$c=2b,sinB=$\sqrt{2}$sinC,则$sin\frac{C}{2}$=$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=asinx+btanx+|x|,满足f(5)=7,则f(-5)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列各式的值:
(1)5sin90°+2cos0°-3sin270°+10cos180°
(2)sin$\frac{π}{6}$-cos2$\frac{π}{4}$cosπ-$\frac{1}{3}$tan2$\frac{π}{3}$-cosπ+sin$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)是R上的奇函数,且当x>0时,f(x)=x2(1-x),f(x)在R上的解析式_f(x)=$\left\{\begin{array}{l}{{x}^{2}(1-x),}&{x≥0}\\{-{x}^{2}(1+x),}&{x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.等腰梯形ABCD,上底CD=1,腰AD=CB=$\sqrt{2}$,下底AB=3,以下底所在直线为x轴,则由斜二侧画法画出的直观图A′B′C′D′的面积为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{{\sqrt{2}}}{4}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.与-457°角的终边相同的角的集合是(  )
A.{α|α=475°+k•360°,k∈Z}B.α|α=97°+k•360°,k∈Z}
C.α|α=263°+k•360°,k∈Z}D.α|α=-263°+k•360°,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.($\frac{x}{2}$+$\frac{1}{x}$$+\sqrt{2}$)2的展开式中的常数项为3.(用数字作答)

查看答案和解析>>

同步练习册答案