精英家教网 > 高中数学 > 题目详情

【题目】我国南北朝数学家何承天发明的调日法是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数的不足近似值和过剩近似值分别为,则的更为精确的不足近似值或过剩近似值.我们知道,若令,则第一次用“调日法”后得的更为精确的过剩近似值,即,若每次都取最简分数,那么第四次用“调日法”后可得的近似分数为(

A.B.C.D.

【答案】D

【解析】

根据调日法的循环规律求解.

第一次用调日法后得的更为精确的过剩近似值,即

第二次用调日法后得的更为精确的过剩近似值,即

第三次用调日法后得的更为精确的过剩近似值,即

第四次用调日法后得的更为精确的过剩近似值,即

故第四次用调日法后可得的近似分数为

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年来,共享单车在我国各城市迅猛发展,为人们的出行提供了便利,但也给城市的交通管理带来了一些困难,为掌握共享单车在省的发展情况,某调查机构从该省抽取了5个城市,并统计了共享单车的指标指标,数据如下表所示:

城市1

城市2

城市3

城市4

城市5

指标

2

4

5

6

8

指标

3

4

4

4

5

1)试求间的相关系数,并说明是否具有较强的线性相关关系(若,则认为具有较强的线性相关关系,否则认为没有较强的线性相关关系).

2)建立关于的回归方程,并预测当指标为7时,指标的估计值.

3)若某城市的共享单车指标在区间的右侧,则认为该城市共享单车数量过多,对城市的交通管理有较大的影响交通管理部门将进行治理,直至指标在区间内现已知省某城市共享单车的指标为13,则该城市的交通管理部门是否需要进行治理?试说明理由.

参考公式:回归直线中斜率和截距的最小二乘估计分别为

,,相关系数

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的一个焦点与抛物线的焦点相同,为椭圆的左、右焦点,M为椭圆上任意一点,若的面积最大值为1.

1)求椭圆C的方程;

2)设不过原点的直线l与椭圆C交于不同的两点AB,若直线l的斜率是直线斜率的等比中项,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,曲线C的参数方程是,(为参数).

(1)求直线被曲线C截得的弦长;

(2)从极点作曲线C的弦,求各弦中点轨迹的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,满足.数列满足,且

(1)求数列的通项公式;

(2)若,数列的前项和为,对任意的,都有,求实数的取值范围;

(3)是否存在正整数,使)成等差数列,若存在,求出所有满足条件的,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数fx=,其中a>0.

)若a=1,求曲线y=fx)在点(2f2))处的切线方程;

)若在区间上,fx>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)已知函数fx)=-2lnxx22axa2,其中a>0.

)设gx)为fx)的导函数,讨论gx)的单调性;

)证明:存在a∈01),使得fx≥0恒成立,且fx)=0在区间(1,+)内有唯一解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面为矩形,平面平面,点在线段上,且平面.

1)求证:平面

2)若点是线段上靠近的三等分点,点在线段上,且平面,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆C 经过点,设椭圆C的左顶点为A,右焦点为F,右准线于x轴交于点M,且F为线段AM的中点,

1)求椭圆的标准方程;

2)若过点A的直线l与椭圆C交于另一点PPx轴上方),直线PF与椭圆C相交于另一点Q,且直线lOQ垂直,求直线PQ的斜率.

查看答案和解析>>

同步练习册答案