精英家教网 > 高中数学 > 题目详情
(2012•黄浦区二模)如图所示的几何体,是由棱长为2的正方体ABCD-A1B1C1D1截去一个角后所得的几何体.
(1)试画出该几何体的三视图;(主视图投影面平行平面DCC1D1,主视方向如图所示.请将三张视图按规定位置画在答题纸的相应虚线框内)
(2)若截面△MNH是边长为2的正三角形,求该几何体的体积V.
分析:(1)根据三视图的定义可画出该几何体的三视图
(2)由正三角形△MNH是的边长,先求出截掉的三棱锥的棱长和体积,用正方体的体积减掉小三棱锥的体积即可
解答:解(1)

(2)设原正方体中由顶点B1出发的三条棱的棱长分别为B1M=x,B1N=y,B1H=z.
结合题意,可知,
x2+y2=4
y2+z2=4
x2+z2=4
,解得x=y=z=
2

因此,所求几何体的体积V=V正方体-VB1-MNH=23-
1
3
1
2
•(
2
)3
=8-
2
3
点评:本题考查由三视图求面积、体积,求解的关键是由视图得出几何体的长、宽、高等性质,熟练掌握各种类型的几何体求体积的公式是关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•黄浦区二模)已知α、β∈(0,
π
2
),若cos(α+β)=
5
13
,sin(α-β)=-
4
5
,则cos2α=
63
65
63
65

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)对n∈N*,定义函数fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求证:y=fn(x)图象的右端点与y=fn+1(x)图象的左端点重合;并回答这些端点在哪条直线上.
(2)若直线y=knx与函数fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的图象有且仅有一个公共点,试将kn表示成n的函数.
(3)对n∈N*,n≥2,在区间[0,n]上定义函数y=f(x),使得当m-1≤x≤m(n∈N*,且m=1,2,…,n)时,f(x)=fm(x).试研究关于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的实数解的个数(这里的kn是(2)中的kn),并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)已知函数f(x)=|x2-2ax+a|(x∈R),给出下列四个命题:
①当且仅当a=0时,f(x)是偶函数;
②函数f(x)一定存在零点;
③函数在区间(-∞,a]上单调递减;
④当0<a<1时,函数f(x)的最小值为a-a2
那么所有真命题的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)函数f(x)=log
1
2
(2x+1)
的定义域为
(-
1
2
,+∞)
(-
1
2
,+∞)

查看答案和解析>>

同步练习册答案