精英家教网 > 高中数学 > 题目详情

已知函数.
(1)若,求证:当时,
(2)若在区间上单调递增,试求的取值范围;
(3)求证:.

(1) 详见解析;(2) 的取值范围;(3)详见解析.

解析试题分析:(1) 当时,求证:当时,,将代入,得,注意到,只要证明当时,单调递增,则,由于中含有指数函数,可对求导得,只需证明当时,即可,注意到,只要证明当时,单调递增即可,因此令,对求导得,显然当时,,问题得证;(2) 求实数的取值范围,由于在区间上单调递增,则当时,,故对求导得,即当时,恒成立,即)恒成立,只需求出的最小值即可,令,对求导得,令导数等于零,解出的值,从而的最小值,进而得实数的取值范围;
(3)求证:,由(1) 知:当时,,即,可得,两边取对数得,令,得,再令,得个式子相加,然后利用放缩法可证得结论.
试题解析:(1) ,则h(x)=,∴h′(x)=ex-1>0(x>0),
∴h(x)=f′(x)在(0,+∞)上递增,∴f′(x)>f′(0)=1>0,
∴f(x)=exx2在(0,+∞)上单调递增,故f(x)>f(0)=1.(     4分)
(2) f′(x)=ex-2kx,下面求使 (x>0)恒成立的k的取值范围.
若k≤0,显然f′(x)>0,f(x)在区间(0,+∞)上单调递增;
记φ(x)=ex-2kx,则φ′(x)=ex-2k,
当0<k<时,∵ex>e0=1, 2k<1,∴φ′ (x)>0,则φ(x)在(0,+∞)上单调递增,
于是f′(x)=φ(x)>φ(0)=1>0,∴f(x)在(0,+∞)上单调递增;
当k≥时,φ(x)=ex-2kx在(0,ln 2k)上单调递减,在(ln 2k,+∞)上单调递增,
于是f′(x)=φ(x)≥φ(ln 2k)=eln 2k-2kln 2k,
由eln 2k-2kln 2k≥0得2k-2kln 2k≥0,则≤k≤
综上,k的取值范围为(-∞,].      9分
另解:(2) ,下面求使(x>0)恒成立的k的取值范围.
)恒成立。记

上单调递减,在

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

定义在R上的函数同时满足以下条件:
在(0,1)上是减函数,在(1,+∞)上是增函数;
是偶函数;
在x=0处的切线与直线y=x+2垂直.
(1)求函数的解析式;
(2)设g(x)=,若存在实数x∈[1,e],使g(x)<,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln x+2x-6.
(1)证明:函数f(x)有且只有一个零点;
(2)求该零点所在的一个区间,使这个区间的长度不超过

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=xln xg(x)=x3ax2x+2.
(1)求函数f(x)的单调区间;
(2)求f(x)在区间[tt+2](t>0)上的最小值;
(3)对一切的x∈(0,+∞),2f(x)<g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=(x+1)ln x-2x.
(1)求函数的单调区间;
(2)设h(x)=f′(x)+,若h(x)>k(k∈Z)恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)当时,求函数的单调区间;
(2)当时,若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数, 在处取得极小值2.
(1)求函数的解析式;
(2)求函数的极值;
(3)设函数, 若对于任意,总存在, 使得, 求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)求证:函数上单调递增;
(Ⅱ)设,若直线PQ∥x轴,求P,Q两点间的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若曲线处的切线互相平行,求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意,均存在,使得,求的取值范围.

查看答案和解析>>

同步练习册答案