精英家教网 > 高中数学 > 题目详情
已知函数f(x)在(-∞,2]为增函数,且f(x+2)是R上的偶函数,若f(a)≤f(3),则实数a的取值范围是(  )
分析:由f(x+2)是R上的偶函数求出图象的对称轴为x=2,从而由f(x)在(-∞,2]上是增函数,判断出f(x)在(2,+∞)上是减函数,由f(a)≤f(3),结合函数的单调性求出a的范围.
解答:解:∵f(x+2)是R上的偶函数,∴f(x+2)=f(-x+2)
∴f(x)图象的对称轴为x=2,
∵f(x)在(-∞,2]上是增函数,∴f(x)在(2,+∞)上是减函数,
∵f(a)≤f(3),且f(3)=f(1),
∴a≤1或a≥3,
故选D.
点评:本题主要考查了偶函数定义的应用,求出函数的对称轴,判断出函数在定义域上的单调性,本题解答中容易漏点,认为由f(a)≤f(3),直接得到a≥3,突破点在于求出函数的对称轴.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、已知函数f(x)在R上是减函数,A(0,-2),B(-3,2)是其图象上的两点,那么不等式-2<f(x)<2的解集是
{x|-3<x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:

11、已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是
y=2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上满足y=f(x)=2f(2-x)+ex-1+x2,则曲线y=f(x)在点(1,f(1))处的切线方程是(  )
A、2x-y-1=0B、x-y-3=0C、3x-y-2=0D、2x+y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上为增函数,且满足f(4)<f(2x),则x的取值范围是
(2,+∞)
(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2
2
-(1+2a)x+
4a+1
2
ln(2x+1)
,a>0.
(Ⅰ)已知函数f(x)在x=2取得极小值,求a的值;
(Ⅱ)讨论函数f(x)的单调区间;
(Ⅲ)当a>
1
4
时,若存在x0∈(
1
2
,+∞),使得f(x0)<
1
2
-2a2
,求实数a的取值范围.

查看答案和解析>>

同步练习册答案