如图,在几何体ABCDE中,AB=AD=2,AB⊥AD,AE⊥平面ABD,M为线段BD的中点,MC∥AE,且AE=MC=.
(1)求证:平面BCD⊥平面CDE;
(2)若N为线段DE的中点,求证:平面AMN∥平面BEC.
(1)见解析(2)见解析
【解析】(1)证明:∵AB=AD=2,AB⊥AD,M为线段BD的中点,
∴AM=BD=,AM⊥BD,
∵AE=MC=,
∴AE=MC=BD=,
∴BC⊥CD,BD⊥CM.
∵AE⊥平面ABD,MC∥AE,∴MC⊥平面ABD,
∴MC⊥AM,∴AM⊥平面CBD.
又MC∥AE,AE=MC=,
∴四边形AMCE为平行四边形,∴EC∥AM,
∴EC⊥平面CBD,∴BC⊥EC,
∵EC∩CD=C,
∴BC⊥平面CDE.
∵BC?平面BCD,∴平面BCD⊥平面CDE.
(2)∵M为BD的中点,N为DE的中点,
∴MN∥BE.
由(1)知EC∥AM且AM∩MN=M,
又BE∩EC=E,
∴平面AMN∥平面BEC.
科目:高中数学 来源:2014年高考数学文复习二轮作业手册新课标·通用版限时集11讲练习卷(解析版) 题型:选择题
某四棱锥的三视图如图所示,则该四棱锥的体积是( )
A.5 B.2 C. D.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学文二轮专题复习与测试选修4-5不等式选讲 练习卷(解析版) 题型:选择题
不等式|x-5|+|x+3|≥10的解集是( )
A.[-5,7] B.[-4,6]
C.(-∞,-5]∪[7,+∞) D.(-∞,-4]∪[6,+∞)
查看答案和解析>>
科目:高中数学 来源:2014年高考数学文二轮专题复习与测试选修4-1几何证明选讲练习卷(解析版) 题型:解答题
如图,圆O的半径OC垂直于直径AB,弦CD交半径 OA于E,过D的切线与BA的延长线交于M.
(1)求证:MD=ME;
(2)设圆O的半径为1,MD=,求MA及CE的长.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学文二轮专题复习与测试解答题抢分训练练习卷(解析版) 题型:解答题
已知函数f(x)=(ax2-2x+a)·e-x.
(1)当a=1时,求函数f(x)的单调区间;
(2)设g(x)=--a-2,h(x)=x2-2x-ln x,若x>1时总有g(x)<h(x),求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学文二轮专题复习与测试解答题保分训练练习卷(解析版) 题型:解答题
袋内装有6个球,这些球依次被编号为1、2、3、……、6,设编号为n的球重n2-6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).
(1)从袋中任意取出一个球,求其重量大于其编号的概率;
(2)如果不放回地任意取出2个球,求它们重量相等的概率.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(四)第二章第一节练习卷(解析版) 题型:填空题
二次函数的图象经过三点A(,),B(-1,3),C(2,3),则这个二次函数的解析式为__________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(六)第二章第三节练习卷(解析版) 题型:填空题
已知奇函数f(x)满足f(x+2)=-f(x),且当x∈(0,1)时,f(x)=2x,则f()的值为 .
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(五)第二章第二节练习卷(解析版) 题型:选择题
函数f(x)=1-( )
(A)在(-1,+∞)上单调递增
(B)在(1,+∞)上单调递增
(C)在(-1,+∞)上单调递减
(D)在(1,+∞)上单调递减
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com