精英家教网 > 高中数学 > 题目详情
精英家教网如图,直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=
3
,∠ABC=60°,E,F分别为A1C和BB1上的中点.
(Ⅰ) 证明:AB⊥A1C;
(Ⅱ)证明:B1E∥平面AFC.
分析:(I)根据AB=1,AC=AA1=
3
,∠ABC=60°,可知AB⊥AC,而A1A⊥平面ABC,AB?平面ABC,根据线面垂直的性质可知AB⊥A1A,又AC∩A1A=A,根据线面垂直的判定定理可知AB⊥平面A1ACC1,又A1C?平面A1ACC1,从而AB⊥A1C;
(II)取AC的中点D,连接ED、FD,根据中位线可知DE∥B1F且DE=B1F,则四边形B1FDE为平行四边形,从而B1E∥FD,又B1E?平面AFC,FD?平面AFC,根据线面平行的判定定理可知B1E∥平面AFC.
解答:证明:(I)∵AB=1,AC=AA1=
3
,∠ABC=60°
∴AB⊥AC
∵直三棱柱ABC-A1B1C1
∴A1A⊥平面ABC,而AB?平面ABC
∴AB⊥A1A,又AC∩A1A=A
∴AB⊥平面A1ACC1,而A1C?平面A1ACC1
∴AB⊥A1C;
(II)证明:取AC的中点D,连接ED、FD
∵D为AC的中点,E为A1C的中点
∴DE∥B1F且DE=B1F
∴四边形B1FDE为平行四边形
则B1E∥FD,B1E?平面AFC,FD?平面AFC
∴B1E∥平面AFC
点评:本题考查直线与平面平行的判定,以及空间两直线的位置关系等有关知识,同时考查学生空间想象能力,逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,侧棱AA1=1,侧面AA1B1B的两条对角线交于点D,B1C1的中点为M,求证:CD⊥平面BDM.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.
(1)求直线BE与A1C所成的角;
(2)在线段AA1中上是否存在点F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求线段MN的长;
(Ⅱ)求证:MN∥平面ABB1A1
(Ⅲ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中点.
(Ⅰ)证明:A1C1∥平面ACD;
(Ⅱ)求异面直线AC与A1D所成角的大小;
(Ⅲ)证明:直线A1D⊥平面ADC.

查看答案和解析>>

同步练习册答案