精英家教网 > 高中数学 > 题目详情
14.已知扇形的半径为R,周长为3R,则扇形的圆心角等于1.

分析 利用扇形的周长及半径求出扇形的弧长,然后利用弧长公式即可求出扇形的圆心角.

解答 解:因为扇形的半径为R,周长为3R,
所以扇形的弧长=3R-2R=R,
所以扇形的圆心角等于$\frac{弧长}{半径}$=$\frac{R}{R}$=1,则扇形的圆心角的弧度数为1.
故答案为:1.

点评 本题主要考查了扇形的弧长公式的应用,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在△ABC中,已知tanA=$\frac{3}{4}$,tanB=2.
(1)求cosA,sinB的值;
(2)求tan(C-2A)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.命题:?x∈[0,$\frac{π}{2}$],sinx+cosx≥2的否定是(  )
A.?x∈[0,$\frac{π}{2}$],sinx+cosx<2B.?x∈[0,$\frac{π}{2}$],sinx+cosx≥2
C.?x∈[0,$\frac{π}{2}$],sinx+cosx≤2D.?x∈[0,$\frac{π}{2}$],sinx+cosx<2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在空间四边形ABCD的边AB、BC、CD、DA上分别取点E、F、G、H,如果EH、FG相交于一点M,那么M一定在直线BD上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.首项为-4的等差数列{an}从第10项起为正数,则公差d的取值范围为(  )
A.$({\frac{4}{9},+∞})$B.$({\frac{4}{9},\frac{1}{2}})$C.$({\frac{4}{9},\frac{1}{2}}]$D.$({-∞,\frac{4}{9}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}中,a1=3,且an=2an-1+2n-1(n≥2且n∈N*
(Ⅰ)证明:数列{$\frac{{a}_{n}-1}{{2}^{n}}$}为等差数列;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设等比数列{an}的前n项和Sn=3n+C(C为实数),求a1,an,C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}满足a1=2,an+1-an=3•4n(n∈N*).
(1)求数列{an}的通项公式;
(2)令bn=nan,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.计算:C${\;}_{8}^{2}$+C${\;}_{8}^{3}$=84.(用数字作答)

查看答案和解析>>

同步练习册答案