精英家教网 > 高中数学 > 题目详情

如图,在平面直角坐标系中,已知抛物线,设点为抛物线上的动点(异于顶点),连结并延长交抛物线于点,连结并分别延长交抛物线于点,连结,设的斜率存在且分别为.

(1)若,求
(2)是否存在与无关的常数,是的恒成立,若存在,请将表示出来;若不存在请说明理由.

(1)2;(2).

解析试题分析:(1)依题意求直线的方程,设两点的坐标分别为,联立方程组消去得到关于的方程,由韦达定理求出
,在根据弦长公式求解;(2)设求直线的方程代入抛物线方程,消去得到关于的方程,找到的关系是,用表示点的坐标,同理用表示点的坐标,由于三点共线,找到的关系,最后用斜率公式求,整理即得.
试题解析:(1)直线,设





           4分
(2)设
则直线的方程为:,代入抛物线方程
整理得,
,即
从而,故点
同理,点          8分
三点共线



整理得
所以,

                   13分
考点:直线与抛物线的位置关系,斜率公式,韦达定理, 弦长公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,是椭圆的左、右顶点,椭圆的离心率为,右准线的方程为.

(1)求椭圆方程;
(2)设是椭圆上异于的一点,直线于点,以为直径的圆记为. ①若恰好是椭圆的上顶点,求截直线所得的弦长;
②设与直线交于点,试证明:直线轴的交点为定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左、右焦点分别为,椭圆上的点满足,且的面积
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在直线,使与椭圆交于不同的两点,且线段恰被直线平分?若存在,求出的斜率取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C:,定点M(0,5),直线轴交于点F,O为原点,若以OM为直径的圆恰好过与抛物线C的交点.
(1)求抛物线C的方程;
(2)过点M作直线交抛物线C于A,B两点,连AF,BF延长交抛物线分别于,求证: 抛物线C分别过两点的切线的交点Q在一条定直线上运动.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知椭圆的两个焦点分别为,且到直线的距离等于椭圆的短轴长.

(Ⅰ) 求椭圆的方程;
(Ⅱ) 若圆的圆心为(),且经过,是椭圆上的动点且在圆外,过作圆的切线,切点为,当的最大值为时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左、右焦点分别为为原点.
(1)如图1,点为椭圆上的一点,的中点,且,求点轴的距离;

(2)如图2,直线与椭圆相交于两点,若在椭圆上存在点,使四边形为平行四边形,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆过定点,圆心在抛物线上,为圆轴的交点.
(1)当圆心是抛物线的顶点时,求抛物线准线被该圆截得的弦长.
(2)当圆心在抛物线上运动时,是否为一定值?请证明你的结论.
(3)当圆心在抛物线上运动时,记,求的最大值,并求出此时圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的两个焦点是F1(c,0),F2(c,0)(c>0)。
(I)若直线与椭圆C有公共点,求的取值范围;
(II)设E是(I)中直线与椭圆的一个公共点,求|EF1|+|EF2|取得最小值时,椭圆的方程;
(III)已知斜率为k(k≠0)的直线l与(II)中椭圆交于不同的两点A,B,点Q满足   ,其中N为椭圆的下顶点,求直线l在y轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在坐标原点,短轴长为4,且有一个焦点与抛物线的焦点重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知经过定点M(2,0)且斜率不为0的直线交椭圆C于A、B两点,试问在x轴上是否另存在一个定点P使得始终平分?若存在,求出点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案