精英家教网 > 高中数学 > 题目详情

一个多面体的直观图和三视图如下:(其中分别是中点)

(1)求证:平面;

(2)求多面体的体积.

 

【答案】

 (1)见解析;(2)

【解析】

试题分析:(1)由三视图知,该多面体是底面为直角三角形的直三棱柱,那么结合棱柱的性质可知结论成立。

(2)由三视图可知,该多面体是底面为等腰直角三角形的直三棱柱,在直三棱柱中,两个侧面是边长为2的正方形,得到四棱锥的高AE=2,根据四棱锥的体积公式得到结果.

解:

(1)由三视图知,该多面体是底面为直角三角形的直三棱柱,且,

,∴.     ---2分

中点,连,由分别是中点,可设:,

∴面…          ---8分

(2)作,由于三棱柱为直三棱柱

,

,---12

考点:本题主要考查了线面平行的判定定理的运用,以及几何体体积的运算。

点评:解决该试题的关键是能利用三视图还原为几何体,结合几何体的结构特点和公式得到其体积,以及线面的平行的判定。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点.
(Ⅰ)求证:GN⊥AC;
(Ⅱ)求二面角F-MC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的直观图和三视图如图所示精英家教网
(1)求证:PA⊥BD;
(2)是否在线段PD上存在一Q点,使二面角Q-AC-D的平面角为30°,设λ=
DQDP
,若存在,求λ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的直观图和三视图如图所示:

(I)求证:PA⊥BD;
(II)连接AC、BD交于点O,在线段PD上是否存在一点Q,使直线OQ与平面ABCD所成的角为30°?若存在,求
|DQ||DP|
的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的直观图和三视图如图所示,其中M、G分别是AB、DF的中点.
(1)在AD上(含A、D端点)确定一点P,使得GP∥平面FMC;
(2)一只苍蝇在几何体ADF-BCE内自由飞翔,求它飞入几何体F-AMCD内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的直观图和三视图如图所示,其中M、G分别是AB、DF的中点.精英家教网
(1)求证:CM⊥平面FDM;
(2)在线段AD上(含A、D端点)确定一点P,使得GP∥平面FMC,并给出证明.

查看答案和解析>>

同步练习册答案