分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答 解:由z=x-2y+5得y=$\frac{1}{2}x-\frac{z}{2}$+$\frac{5}{2}$,
作出不等式组对应的平面区域如图(阴影部分):
平移直线y=$\frac{1}{2}x-\frac{z}{2}$+$\frac{5}{2}$
由图象可知当直线y=$\frac{1}{2}x-\frac{z}{2}$+$\frac{5}{2}$,过点A时,直线y=$\frac{1}{2}x-\frac{z}{2}$的截距最小,此时z最大,
由$\left\{\begin{array}{l}{x=1}\\{x+y=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$,代入目标函数z=x-2y+5,得z=1+2+5=8,
∴目标函数z=x-2y+5的最大值是8.
故答案为:8
点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.
科目:高中数学 来源: 题型:解答题
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数y(个) | 22 | 25 | 29 | 26 | 16 | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ϕ | B. | (1,+∞) | C. | [1,+∞) | D. | [0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com