精英家教网 > 高中数学 > 题目详情

【题目】在任何个连续的正整数中,使得必有一数其各位数字之和是7的倍数成立的最小的正整数______.

【答案】13

【解析】

注意到,12个连续正整数994,995,…,1005中任一数的各位数字之和均不是7的倍数

因此,.

对每个非负整数,称如下10个数所构成的集合

为一个“基本段”.

可见,13个连续正整数要么属于两个基本段,要么属于三个基本段.

13个连续数属于两个基本段时,由抽屉原理,知其中必有连续的七个数属于同一个基本段:当13个连续数属于三个基本段,其中必有连续十个数同属于.

,,…, 是属于同一基本段的七个数,其各位数字之和分别为.

显然,这七个和数被7除的余数互不相同.故其中必有一个是7的倍数.

因此,所求的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知100条线段的长度集合,试求从这些线段中任取三条线段能够构成三角形的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的非负半轴重合,若曲线极坐标系方程为

,直线的参数方程为为参数).

(1)求曲线的直角坐标方程与直线的普通方程;

(2)设点直线与曲线交于两点, 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

平面直角坐标系中,射线,曲线的参数方程为为参数),曲线的方程为;以原点为极点,轴的非负半轴为极轴建立极坐标系.曲线的极坐标方程为.

(Ⅰ)写出射线的极坐标方程以及曲线的普通方程;

(Ⅱ)已知射线交于,与交于,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今年4月23日我市正式宣布实施“3+1+2”的高考新方案,“3”是指必考的语文、数学、外语三门学科,“1”是指在物理和历史中必选一科,“2”是指在化学、生物、政治、地理四科中任选两科.为了解我校高一学生在物理和历史中的选科意愿情况,进行了一次模拟选科. 已知我校高一参与物理和历史选科的有1800名学生,其中男生1000人,女生800人. 按分层抽样的方法从中抽取了36个样本,统计知其中有17个男生选物理,6个女生选历史.

(I)根据所抽取的样本数据,填写答题卷中的列联表. 并根据统计量判断能否有的把握认为选择物理还是历史与性别有关?

(II)在样本里选历史的人中任选4人,记选出4人中男生有人,女生有人,求随机变量 的分布列和数学期望.(的计算公式见下),临界值表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是正方形,四边形是梯形,平面,且

1)求证:平面

2)求钝二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则以下结论正确的是(

A.函数的单调减区间是

B.函数有且只有1个零点

C.存在正实数,使得成立

D.对任意两个正实数,且,若

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班级的全体学生平均分成个小组,且每个小组均有名男生和多名女生.现从各个小组中随机抽取一名同学参加社区服务活动,若抽取的名学生中至少有一名男生的概率为,则(

A.该班级共有名学生

B.第一小组的男生甲被抽去参加社区服务的概率为

C.抽取的名学生中男女生数量相同的概率是

D.设抽取的名学生中女生数量为,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线M的极坐标方程为.

1)求C的极坐标方程和曲线M的直角坐标方程;

2)若MC只有1个公共点P,求m的值与P的极坐标().

查看答案和解析>>

同步练习册答案