分析 利用等差数列的通项公式列出方程组,求出首项与公差,由此能求出an及Sn.
解答 解:∵等差数列{an}满足:a1+a4=4,a2•a3=3且{an}的前n项和为Sn.
∴$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}+3d=4}\\{({a}_{1}+d)({a}_{1}+2d)=3}\end{array}\right.$,
解得a1=-1,d=2或a1=5,d=-2,
当a1=-1,d=2时,an=-1+(n-1)×2=2n-3,Sn=$\frac{n}{2}(-1+2n-3)$=n2-2n;
当a1=5,d=-2时,an=5+(n-1)×(-2)=7-2n,${S}_{n}=\frac{n}{2}(5+7-2n)=6n-{n}^{2}$.
点评 本题考查等差数列的通项公式及前n项和公式的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
科目:高中数学 来源: 题型:选择题
A. | (2,$\frac{19}{8}$) | B. | (2,3) | C. | (2,$\frac{19}{8}$] | D. | (2,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ∅ | B. | {1} | C. | {0,1,2} | D. | {2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com