精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)若曲线在点处得切线方程与直线垂直,求的值;

(Ⅱ)若上为单调递减函数,求的取值范围;

(Ⅲ)设,求证: .

【答案】(1) ;(2);(3)证明见解析.

【解析】试题分析:求出根据,可求得的值;( 上为单调递减函数,等价于由题意恒成立,即恒成立利用导数研究函数的单调性求出从而可得结果(Ⅲ)原不等式等价于.令,则,则,即,只需证明的最大值小于零即可.

试题解析:(Ⅰ) ,所以

(Ⅱ)由题意恒成立,即恒成立.

,则

,所以.

(Ⅲ)因为,不等式

.令,则,则,即.

,由(Ⅱ)知, 上单调递减,

所以当时, .故当时,不等式成立.

【方法点晴】本题主要考查利用导数求函数的最值、导数的几何意义以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数恒成立(可)或恒成立(即可);② 数形结合(图象在 上方即可);③ 讨论最值恒成立;④ 讨论参数.本题(Ⅱ)是利用方法 ① 求得的取值范围的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《续古摘奇算法》(杨辉)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入的方格中,使得每一行,每一列及对角线上的三个数的和都相等,我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是( )

8

3

4

1

5

9

6

7

2

A. 9 B. 8 C. 6 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且

1)求函数上的单调区间,并给以证明

2)设关于的方程的两根为,试问是否存在实数,使得不等式对任意的恒成立?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙同学参加学校“一站到底”闯关活动,活动规则:①依次闯关过程中,若闯关成功则继续答题;若没通关则被淘汰;②每人最多闯3关;③闯第一关得10分,闯第二关得20分,闯第三关得30分,一关都没过则没有得分.已知甲每次闯关成功的概率为,乙每次闯关成功的概率为. 

(Ⅰ)设乙的得分总数为,求得分布列和数学期望;

(Ⅱ)求甲恰好比乙多30分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若存在实数使得不等式成立,求实数的取值范围为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数处的切线方程为,求的值;

(Ⅱ)讨论方程的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在两个正实数,使得等式成立(其中为自然对数的底数),则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】河南多地遭遇跨年霾,很多学校调整元旦放假时间,提前放假让学生们在家里躲霾,郑州市根据《郑州市人民政府办公厅关于将重污染天气黄色预警升级为红色预警的通知》.自12月29日12时将黄色预警升级为红色预警,12月30日0时启动I级响应,明确要求:“幼儿园、中小学等教育机构停课,停课不停学”,学生和家长对停课这一举措褒贬不一,有为了健康赞成的,有怕耽误学习不赞成的.某调查机构为了了解公众对该举措的态度,随机调查采访了50人,将调查情况整理汇总成下表:

年龄(岁)

频数

5

10

15

10

5

5

赞成人数

4

6

9

6

3

4

(1)请补全被调查人员年龄的频率分布直方图;

(2)若从年龄在的被调查者中分别随机选取一人进行追踪调查,求这两人都赞成“停课”这一举措的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的单调区间和极值;

(Ⅱ)若,均有,求实数的取值范围.

查看答案和解析>>

同步练习册答案