精英家教网 > 高中数学 > 题目详情

【题目】已知函数是奇函数

1)求的值;

(2)当时,求不等式成立,求的取值范围;

【答案】1k=﹣1;(2)见解析

【解析】

1)可根据条件得出fx)是R上的奇函数,从而得出f0)=0,从而求出k=﹣1

2fx)=axax,求导得出f′(x)=(axaxlna,可讨论a,根据导数符号判断fx)在(﹣11)上的单调性,这样根据fx)是奇函数以及fx)的单调性即可由不等式f1m+f12m)<0得出关于m的不等式组,解不等式组即可得出m的范围.

1)∵fx)是R上的奇函数,∴f0)=1+k0,∴k=﹣1

2fx)=axaxfx)=(ax+axlna

∴①0a1时,fx)<0fx)在(﹣11)上单调递减,且fx)是奇函数,

∴由f1m+f12m)<0得,f1m)<f2m1),

,解得

a1时,fx)>0fx)在(﹣11)上单调递增,且fx)是奇函数,

∴由f1m+f12m)<0得,f1m)<f2m1),

,解得

综上:当0a1时,m的取值范围为,当a1时,m的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代的数学名著,书中把三角形的田称为“圭田”,把直角梯形的田称为“邪田”,称底是“广”,称高是“正从”,“步”是丈量土地的单位.现有一邪田,广分别为十步和二十步,正从为十步,其内有一块广为八步,正从为五步的圭田.若在邪田内随机种植一株茶树,求该株茶树恰好种在圭田内的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“作品获得一等奖”; 乙说:“作品获得一等奖”;

丙说:“,两项作品未获得一等奖”; 丁说:“作品获得一等奖”.

若这四位同学只有两位说的话是对的,则获得一等奖的作品是( )

A. 作品 B. 作品 C. 作品 D. 作品

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】德国数学家科拉茨年提出了一个著名的猜想:任给一个正整数,如果是偶数,就将它减半(即);如果是奇数,则将它乘(即),不断重复这样的运算,经过有限步后,一定可以得到.对于科拉茨猜想,目前谁也不能证明,也不能否定.现在请你研究:如果对正整数(首项)按照上述规则施行变换后的第项为(注:可以多次出现),则的所有不同值的个数为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆=1(a>b>0)上的点P到左,右两焦点F1F2的距离之和为2,离心率为.

(1)求椭圆的标准方程;

(2)过右焦点F2的直线l交椭圆于AB两点,若y轴上一点M(0,)满足|MA|=|MB|,求直线l的斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,平面.

(1)证明:平面

(2)过点作一平行于平面的截面,画出该截面,说明理由,并求夹在该截面与平面之间的几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是边长为3的正方形,平面,且. 

(1)试在线段上确定一点的位置,使得平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面ABC,,E是BC的中点,

求异面直线AE与所成的角的大小;

若G为中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数及函数(a,b,c∈R),若a>b>ca+b+c=0.

(1)证明:f(x)的图像与g(x)的图像一定有两个交点;

(2)请用反证法证明:

查看答案和解析>>

同步练习册答案