【题目】已知a>0,求证: ﹣ ≥a+ ﹣2.
【答案】证明:要证 ﹣ ≥a+ ﹣2,
只要证 +2≥a+ + .
∵a>0,
故只要证( +2)2≥(a+ + )2 ,
即a2+ +4 +4≥a2+2+ +2 (a+ )+2,
从而只要证 2 ≥ (a+ ),
只要证4(a2+ )≥2(a2+2+ ),
即a2+ ≥2,
即:(a﹣ )2≥0,
而上述不等式显然成立,
故原不等式成立.
【解析】用分析法,证明不等式成立的充分条件成立,要证原命题,只要证 +2≥a+ + ,即只要证( +2)2≥(a+ + )2 , 进而展开化简,可得只要证明:(a﹣ )2≥0,易得证明,
【考点精析】解答此题的关键在于理解不等式的证明的相关知识,掌握不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.
科目:高中数学 来源: 题型:
【题目】如图, 是椭圆的右焦点, 是坐标原点, ,过作的垂线交椭圆于, 两点, 的面积为.
(1)求该椭圆的标准方程;
(2)若直线与上下半椭圆分别交于点、,与轴交于点,且,求的面积取得最大值时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 (x∈R).
(1)求函数f(x)的值域;
(2)①判断函数f(x)的奇偶性;②用定义判断函数f(x)的单调性;
(3)解不等式f(1﹣m)+f(1﹣m2)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班级体育课举行了一次“投篮比赛”活动,为了了解本次投篮比赛学生总体情况,从中抽取了甲乙两个小组样本分数的茎叶图如图所示.
(1)分别求出甲乙两个小组成绩的平均数与方差,并判断哪一个小组的成绩更稳定:
(2)从甲组高于70分的同学中,任意抽取2名同学,求恰好有一名同学的得分在的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机抽调了50人,他们年龄的频数分布及支持“生育二胎”人数如下表:
年龄 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上统计数据填下面2×2列联表;
年龄不低于45岁的人 | 年龄低于45岁的人 | 合计 | |
支持“生育二胎” | a= | c= | |
不支持“生育二胎” | b= | d= | |
合计 |
(2)判断是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异.
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
附表:K2= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列函数:①y=x2+1;②y=﹣|x|;③y=( )x;④y=log2x;
其中同时满足下列两个条件的函数的个数是( )
条件一:定义在R上的偶函数;
条件二:对任意x1 , x2∈(0,+∞),(x1≠x2),有 <0.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年《诗词大会》火爆荧屏,某校为此举办了一场主题为“爱诗词、爱祖国”的诗词知识竞赛,从参赛的全体学生中抽出60人的成绩(满分100分)作为样本.对这60名学生的成绩进行统计,并按, , 分组,得到如图所示的频率分布直方图.
(Ⅰ)若同一组数据用该组区间的中点值代表,估计参加这次知识竞赛的学生的平均成绩;
(Ⅱ)估计参加这次知识竞赛的学生成绩的中位数(结果保留一位小数);
(Ⅲ)若规定80分以上(含80分)为优秀,用频率估计概率,从全体参赛学生中随机抽取3名,记其中成绩优秀的人数为,求的分布列与期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为(﹣1,1),对任意x,y∈(﹣1,1),有f(x)+f(y)=f( ).且当x<0时,f(x)>0.
(1)验证函数f(x)=lg 是否满足这些条件;
(2)若f( )=1,f( )=2,且|a|<1,|b|<1,求f(a),f(b)的值.
(3)若f(﹣ )=1,试解关于x的方程f(x)=﹣ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com