精英家教网 > 高中数学 > 题目详情
2.某几何体的三视图如图所示,则该几何体外接球的表面积为(  )
A.B.12πC.48πD.6$\sqrt{3}$π

分析 由三视图可知:该几何体为一个三棱锥P-BCD,作PA⊥底面BCD,垂足为A,底面ABCD是边长为2的正方形.
则该几何体外接球的直径2R=$\sqrt{P{A}^{2}+A{C}^{2}}$.

解答 解:由三视图可知:该几何体为一个三棱锥P-BCD,
作PA⊥底面BCD,垂足为A,底面ABCD是边长为2的正方形.
则该几何体外接球的直径2R=$\sqrt{P{A}^{2}+A{C}^{2}}$=2$\sqrt{3}$.
表面积为=4πR2=12π.
故选:B.

点评 本题考查了四棱锥的三视图、球的表面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图,则输出的Z值为(  ) 
A.64B.6C.8D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知关于x的方程2x2-mx+1=0,$x∈[{\frac{1}{2},4}]$存在两个不同的实根,则实数m的取值范围为(  )
A.(2,3]B.$(2\sqrt{2},8\frac{1}{4})$C.$[3,8\frac{1}{4}]$D.$(2\sqrt{2},3]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知幂函数f(x)的图象经过点$({\frac{1}{2},8})$,则f(3)=$\frac{1}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.三棱锥P-ABC的四个顶点都在球O的球面上,已知PA、PB、PC两两垂直,PA=1,PB+PC=4,当三棱锥的体积最大时,球心O到平面ABC的距离是(  )
A.$\frac{\sqrt{6}}{12}$B.$\frac{\sqrt{6}}{6}$C.$\frac{\sqrt{6}}{3}$D.$\frac{3}{2}$-$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD中,△PAD为正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E为棱PB的中点
(Ⅰ)求证:平面PAB⊥平面CDE;
(Ⅱ)若AD=CD=2,求点P到平面ADE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=2sinωx(ω>0)在区间$[{-\frac{π}{6}\;,\;\;\frac{π}{4}}]$上单调递增,则ω的最大值为2.且当ω取最大值时f(x)的值域为[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某校校庆期间,大会秘书团计划从包括甲、乙两人在内的七名老师中随机选择4名参加志愿者服务工作,根据工作特点要求甲、乙两人中至少有1人参加,则甲、乙都被选中且列队服务时不相邻的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强).
(1)根据茎叶图中的数据完成2×2列联表,并判断能否有95%的把握认为孩子的幸福感强与是否是留守儿童有关?
幸福感强幸福感弱总计
留守儿童6915
非留守儿童18725
总计241640
(2)从15个留守儿童中按幸福感强弱进行分层抽样,共抽取5人,又在这5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率.
参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.
附表:
P(K2≥k00.0500.010
k03.8416.635

查看答案和解析>>

同步练习册答案