已知数列满足,其中N*.
(Ⅰ)设,求证:数列是等差数列,并求出的通项公式;
(Ⅱ)设,数列的前项和为,是否存在正整数,使得对于N*恒成立,若存在,求出的最小值,若不存在,请说明理由.
科目:高中数学 来源: 题型:解答题
设数列{an}共有n()项,且,对每个i (1≤i≤,iN),均有.
(1)当时,写出满足条件的所有数列{an}(不必写出过程);
(2)当时,求满足条件的数列{an}的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设数列{an} 的前n项和为Sn,满足2Sn=an+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.
(1)求a1,a2,a3的值;
(2)求证:数列{an+2n}是等比数列;
(3)证明:对一切正整数n,有++…+<.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
2013年我国汽车拥有量已超过2亿(目前只有中国和美国超过2亿),为了控制汽车尾气对环境的污染,国家鼓励和补贴购买小排量汽车的消费者,同时在部分地区采取对新车限量上号.某市采取对新车限量上号政策,已知2013年年初汽车拥有量为(=100万辆),第年(2013年为第1年,2014年为第2年,依次类推)年初的拥有量记为,该年的增长量和与的乘积成正比,比例系数为其中=200万.
(1)证明:;
(2)用表示;并说明该市汽车总拥有量是否能控制在200万辆内.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列的首项其中,令集合.
(Ⅰ)若,写出集合中的所有的元素;
(Ⅱ)若,且数列中恰好存在连续的7项构成等比数列,求的所有可能取值构成的集合;
(Ⅲ)求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知正项数列的前项和为,是与的等比中项.
(1)求证:数列是等差数列;
(2)若,且,求数列的通项公式;
(3)在(2)的条件下,若,求数列的前项和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com