精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+bx+c.
(Ⅰ)若,求f(x)在[-2,4]上的最大值与最小值;
(Ⅱ)设函数f(x)的图象关于原点O对称,在点P(x,f(x))处的切线为l,l与函数f(x)的图象交于另一点Q(x1,y1).若P、Q在x轴上的射影分别为P1、Q1,求λ的值.
【答案】分析:(Ⅰ)求出函数的导函数得到函数的驻点,然后在[-2,4]上利用驻点分区间讨论函数的增减性得到函数的最值即可;
(Ⅱ)根据奇函数定义f(-x)=-f(x)求出a和c得到f(x)解析式并求出导函数在点P(x,f(x))写出切线方程,与f(x)解析式联立求出公共解,再根据求出λ的值即可.
解答:(Ⅰ)若,f′(x)=3x2-3x-6=3(x-2)(x+1)

最小值为f(2)=-9,最大值为f(4)=17,
(Ⅱ)由已知得:函数f(x)=x3+ax2+bx+c为奇函数
∴a=0,c=0,∴f(x)=x3+bx
∴f′(x)=3x2+b
∵切点为P(x,y),其中y=f(x),
则切线l的方程为:y=(3x2+b)(x-x)+y

得x3+bx=(3x2+b)(x-x)+y
又y=f(x)=x3+bx
∴x3-x3+b(x-x)-(3x2+b)(x-x)=0
∴(x-x)(x2+xx-2x2)=0
∴(x-x2(x+2x)=0
∴x=x或x=-2x,由题意知,x≠0
从而x1=-2x

∴x1=λx
∴λ=-2
点评:此题考查学生利用导数求闭区间上函数的最值能力,利用导数研究曲线上某点切线方程的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案