精英家教网 > 高中数学 > 题目详情

设函数f(x)=数学公式,其中a∈R.
(1)若a=1,f(x)的定义域为区间[0,3],求f(x)的最大值和最小值;
(2)若f(x)的定义域为区间(0,+∞),求a的取值范围,使f(x)在定义域内是单调减函数.

解:f(x)===a-
设x1,x2∈R,则f(x1)-f(x2)=-
=
(1)当a=1时,f(x)=1-,设0≤x1<x2≤3,
则f(x1)-f(x2)=
又x1-x2<0,x1+1>0,x2+1>0,
∴f(x1)-f(x2)<0,∴f(x1)<f(x2).
∴f(x)在[0,3]上是增函数,
∴f(x)max=f(3)=1-=,f(x)min=f(0)=1-=-1.
(2)设x1>x2>0,则x1-x2>0,x1+1>0,x2+1>0.
若使f(x)在(0,+∞)上是减函数,只要f(x1)-f(x2)<0,而f(x1)-f(x2)=
∴当a+1<0,即a<-1时,有f(x1)-f(x2)<0,
∴f(x1)<f(x2).
∴当a<-1时,f(x)在定义域(0,+∞)内是单调减函数.
分析:由于本题两个小题都涉及到函数的单调性的判断,故可先设x1,x2∈R,得到f(x1)-f(x2)差,将其整理成几个因子的乘积
(1)将a=1的值代入,判断差的符号得出函数的单调性,即可确定函数在区间[0,3]的最大值,计算出结果即可
(2)由于函数是定义域(0,+∞)是减函数,设x1>x2>0,则有f(x1)-f(x2)<0,由此不等式即可得出参数的取值范围.
点评:本题考查函数单调性的判断与单调性的性质,解答的关键是熟练掌握函数单调性判断的方法定义法,本题考查了推理判断的能力及运算能力,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•武昌区模拟)设函数f(x)=sinx+cosx,函数h(x)=f(x)f′(x),下列说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•无锡二模)设函数f(x)=2x,其反函数记为f-1(x),则函数y=f(x)+f-1(x)(x∈[1,2])的值域为
[2,5]
[2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数f(x)=2x,其反函数记为f-1(x),则函数y=f(x)+f-1(x)(x∈[1,2])的值域为________.

查看答案和解析>>

科目:高中数学 来源:2007年江苏省苏锡常镇四市高考数学二模试卷(解析版) 题型:解答题

设函数f(x)=2x,其反函数记为f-1(x),则函数y=f(x)+f-1(x)(x∈[1,2])的值域为   

查看答案和解析>>

科目:高中数学 来源:无锡二模 题型:填空题

设函数f(x)=2x,其反函数记为f-1(x),则函数y=f(x)+f-1(x)(x∈[1,2])的值域为______.

查看答案和解析>>

同步练习册答案