精英家教网 > 高中数学 > 题目详情
12.已知m,n为两条不同的直线,α,β为两个不重合的平面,给出下列命题:
①若m⊥α,n⊥α,则m∥n;
②若m⊥α,m⊥n,则n∥α;
③若α⊥β,m∥α,则m⊥β;
④若m⊥α,m∥β,则α⊥β;
其中正确命题的个数是(  )
A.0B.1C.2D.3

分析 利用空间线面位置关系的判定定理及性质进行判断或举出反例说明.

解答 解:对于①,由线面垂直的性质“垂直于同一个平面的两条直线平行“可知①正确;
对于②,若n?α,则当m⊥α时,m⊥n,但显然n与α不平行,故②错误;
对于③,设α∩β=a,m?β,且m∥a,则m∥α,但m与β不垂直,故③错误;
对于④,过m作平面γ∩β=b,∵m∥β,∴m∥b,
∵m⊥α,∴b⊥α,
又b?β,∴α⊥β.故④正确.
故选:C.

点评 本题考查了空间线面位置关系的判定与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.以直角坐标系原点为极点,Ox轴非负半轴为极轴建立极坐标系,已知直线l的极坐标方程为ρ(sinθ+cosθ)=1.
(1)求直线l的直角坐标方程;
(2)求直线l被曲线C:$\left\{\begin{array}{l}x=2+\sqrt{5}cosα\\ y=1+\sqrt{5}sinα\end{array}\right.$(α为参数)所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某电脑公司有5名产品推销员,其工作年限与年推销金额的数据如表:
推销员编号12345
工作年限x(年)35679
推销金额y(万元)23345
(1)求年推销金额y关于工作年限x的线性回归方程;
(2)判断变量x与y之间是正相关还是负相关;
(3)若第6名推销员的工作年限是11年,试估计他的年推销金额.
【参考数据$\sum_{i=1}^{5}$xiyi=112,$\sum_{i=1}^{5}$xi2=200,
参考公式:线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,其中$\overline{x},\overline{y}$为样本平均数】

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(α)=$\frac{sin(π+α)sin(α+\frac{π}{2})}{cos(α-\frac{π}{2})}$.
(1)化简f(α);
(2)若α是第三象限角,且cos(α+$\frac{π}{2}$)=$\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(文)试卷(解析版) 题型:解答题

阅读下列有关光线的入射与反射的两个事实现象,现象(1):光线经平面镜反射满足入射角与反射角相等(如图1);现象(2):光线从椭圆的一个焦点出发经椭圆反射后通过另一个焦点(如图2).试结合上述事实现象完成下列问题:

(1)有一椭圆型台球桌,长轴长为短轴长为.将一放置于焦点处的桌球击出,经过球桌边缘的反射(假设球的反射完全符合现象(2))后第一次返回到该焦点时所经过的路程记为,求的值(用表示);

(2)结论:椭圆上任一点处的切线的方程为.记椭圆的方程为

①过椭圆的右准线上任一点向椭圆引切线,切点分别为,求证:直线恒过一定点;

②设点为椭圆上位于第一象限内的动点,为椭圆的左右焦点,点的内心,直线轴相交于点,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)为定义在R上的偶函数,当x>0时,xf′(x)+f(x)>0,且f(1)=0,则不等式lgx•f(lgx)<0的解集为(0,$\frac{1}{10}$)∪(1,10).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.卵形线是常见曲线的一种,分笛卡尔卵形线和卡西尼卵形线,卡西尼卵形线是平面内与两个定点(叫做焦点)距离之积等于常数的点的轨迹.某同学类比椭圆与双曲线对卡西尼卵形线进行了相关性质的探究,设焦点F1(-c,0),F2(c,0)是平面内两个定点,|PF1|•|PF2|=a2(a是定长),得出卡西尼卵形线的相关结论:
①当a=0,c=1时,次轨迹为两个点F1(-1,0),F2(1,0);
②若a=c,则曲线过原点;
③若0<a<c,则曲线不存在;
④既是轴对称也是中心对称图形.
其中正确命题的序号是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一列数据分别为1,2,3,4,5,则方差为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线经过点P(-1,2),倾斜角α=$\frac{3π}{4}$.
(1)写出直线的参数方程;
(2)设l与抛物线y=x2相交于A、B两点,求线段AB的长和点P到A、B两点的距离之积;
(3)求线段AB中点的坐标.

查看答案和解析>>

同步练习册答案