精英家教网 > 高中数学 > 题目详情
已知抛物线的顶点在原点,焦点F与双曲线x2-
y2
4
=1
的右顶点重合.
(1)求抛物线的方程;
(2)若直线l经过焦点F,且倾斜角为60°,与抛物线交于A、B两点,求:弦长|AB|.
(1)双曲线x2-
y2
4
=1
的右顶点为(1,0),
∵抛物线的焦点F与双曲线x2-
y2
4
=1
的右顶点重合,
∴F(1,0).
设抛物线的方程为:y2=2px(p>0)
p
2
=1,∴p=2,
∴抛物线方程是 y2=4x;
(2)直线l方程为y=
3
(x-1),代入方程y2=4x,得3(x-1)2=4x,化简得3x2-10x+3=0.
设A(x1,y1),B(x2,y2),∴x1+x2=
10
3

于是|AB|=|AF|+|BF|=x1+x2+2=
16
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知圆心在第二象限,半径为2
2
的圆C与直线y=x相切于坐标原点O.椭圆
x2
a2
+
y2
9
=1与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)试探求C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
2
,直线x=±a和y=±b所围成的矩形ABCD的面积为8.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求
|PQ|
|ST|
的最大值及取得最大值时m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,动点p(x,y)(x≥0)满足:点p到定点F(
1
2
,0)与到y轴的距离之差为
1
2
.记动点p的轨迹为曲线C.
(1)求曲线C的轨迹方程;
(2)过点F的直线交曲线C于A、B两点,过点A和原点O的直线交直线x=-
1
2
于点D,求证:直线DB平行于x轴.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线与椭圆
x2
27
+
y2
36
=1
有相同焦点,且经过点(
15
,4)
,则双曲线的方程为(  )
A.
x2
4
-
y2
5
=1
B.
y2
5
-
x2
4
=1
C.
y2
4
-
x2
5
=1
D.
x2
5
-
y2
4
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:3x2+y2=12,直线x-y-2=0交椭圆C于A,B两点.
(Ⅰ)求椭圆C的焦点坐标及长轴长;
(Ⅱ)求以线段AB为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的方程为:
x2
a2
+
y2
b2
=1(a>b>0)
,其中a2=4c,直线l:3x-2y=0与椭圆的交点在x轴上的射影恰为椭圆的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l与椭圆在x轴上方的一个交点为P,F是椭圆的右焦点,试探究以PF为直径的圆与以椭圆长轴为直径的圆的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点M是曲线C上任一点,点M到点F(1,0)的距离比到y轴的距离多1.
(1)求曲线C的方程;
(2)过点P(0,2)的直线L交曲线C于A、B两点,若以AB为直径的圆经过原点O,求直线L的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
16
+
y2
9
=1
的左、右焦点分别为F1、F2,过焦点F1的直线交椭圆于A,B两点,若△ABF2的内切圆的面积为π.A,B两点的坐标分别为(x1,y1)和(x2,y2),则|y2-y1|的值为______.

查看答案和解析>>

同步练习册答案