精英家教网 > 高中数学 > 题目详情
9.执行下图的程序框图,若输入的a,b,k分别是2,1,3,则输出的M=(  )
A.$\frac{4}{3}$B.$\frac{8}{5}$C.$\frac{15}{4}$D.$\frac{15}{8}$

分析 模拟程序框图的运行过程,即可得出输出的M值.

解答 解:执行程序框图,如下:
a=2,b=1,k=3,n=1≤k,M=2+$\frac{1}{1}$=3;
a=1,b=3,n=2≤k,M=1+$\frac{1}{3}$=$\frac{4}{3}$;
a=3,b=$\frac{4}{3}$,n=3≤k,M=3+$\frac{1}{\frac{4}{3}}$=$\frac{15}{4}$;
a=$\frac{4}{3}$,b=$\frac{15}{4}$,n=4>k,输出M=$\frac{15}{4}$.
故选:C.

点评 本题考查了程序框图和算法的应用问题,解题时应模拟程序运行的过程,是基本题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知△ABC的三个角A,B,C所对的边分别为a,b,c,且a2+b2-ab=c2,则C=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C的对边分别是a,b,c,向量$\overrightarrow{p}$=(a,2b-c),$\overrightarrow{q}$=(cosA,cosC),且$\overrightarrow{p}$∥$\overrightarrow{q}$
(1)求角A的大小;
(2)设f(x)=cos(ωx-$\frac{A}{2}$)+sinωx(ω>0)且f(x)的最小正周期为π,求f(x)在区间[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)=$\sqrt{|x+1|+|x+2|-5}$.
(1)求函数f(x)的定义域A;
(2)设B={x|-1<x<2},当实数a、b∈(B∩∁RA)时,证明:$\frac{|a+b|}{2}<|1+\frac{ab}{4}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知t为常数且0<t<1,函数g(x)=$\frac{1}{2}$(x+$\frac{1-t}{x}$)(x>0),h(x)=$\sqrt{{x}^{2}-2x+2+t}$.
(1)求证:g(x)在(0,$\sqrt{1-t}$)上单调递减,在($\sqrt{1-t}$,+∞)上单调递增;
(2)若函数g(x)与h(x)的最小值恰为函数f(x)=x3+ax2+bx(a,b∈R)的两个零点,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知0≤α≤π,0≤β≤$\frac{π}{4}$,且α+β=$\frac{2π}{3}$,求y=$\frac{1-cos(π-2α)}{cot\frac{α}{2}-tan\frac{α}{2}}$-cos2($\frac{π}{4}$-β)的最大值,并求出相应的α、β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求函数y=$\frac{sinx+1}{2sinx-1}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\left\{\begin{array}{l}x+2,-2≤x≤-1\\{x}^{2},-1<x<2\\ 5-0.5x,2≤x≤3\end{array}\right.$,求该函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.P是双曲线$\frac{{x}^{2}}{3}$-y2=1的右支上一动点,F是双曲线的右焦点,已知A(3,1)
(1)求|PA|+|PF|的最小值;
(2)求|PA|-|PF|的最大值;
(3)求|PA|+$\frac{\sqrt{3}}{2}$|PF|的最小值.

查看答案和解析>>

同步练习册答案