精英家教网 > 高中数学 > 题目详情
设椭圆的左焦点为F,AB为椭圆中过点F的弦,试分析以AB为直径的圆与椭圆的左准线的位置关系.
分析:利用椭圆的第二定义和梯形的中位线的性质、直线与圆的位置关系的判定即可得出.
解答:解:设M为弦AB的中点(即以AB为直径的圆的圆心),A1、B1、M1分别是A、B、M在准线l上的射影(如图).由圆锥曲线的共同性质得|AB|=|AF|+|BF|=e(|AA1|+|BB1|)=2e|MM1|.
∵0<e<1,∴|AB|<2|MM1|,即
|AB|
2
<|MM1|

∴以AB为直径的圆与左准线相离.
点评:熟练掌握椭圆的第二定义和梯形的中位线的性质、直线与圆的位置关系的判定是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

点P是椭圆
x2
4
+
y2
3
=1外的任意一点,过点P的直线PA、PB分别与椭圆相切于A、B两点.
(1)若点P的坐标为(1,2),求直线AB的方程.
(2)设椭圆的左焦点为F,请问:当点P运动时,∠PFA与∠PFB是否总是相等?若是,请给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

设椭圆的左焦点为F,O为坐标原点,已知椭圆中心关于直线对称点恰好落在椭圆的左准线上。

   (1)求过O、F并且与椭圆右准线l相切的圆的方程;

 
   (2)设过点F且不与坐标轴垂直的直线交椭圆于M、N两点,线段MN的中垂线与y轴交于点A,求点A纵坐标的取值范围。

查看答案和解析>>

科目:高中数学 来源:2014届安徽省六校教育研究会高三素质测试理科数学试卷(解析版) 题型:解答题

点P是椭圆外的任意一点,过点P的直线PA、PB分别与椭圆相切于A、B两点。

(1)若点P的坐标为,求直线的方程。

(2)设椭圆的左焦点为F,请问:当点P运动时,是否总是相等?若是,请给出证明。

 

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试文科数学(天津卷解析版) 题型:解答题

设椭圆的左焦点为F, 离心率为, 过点F且与x轴垂直的直线被椭圆截得的线段长为.

(Ⅰ) 求椭圆的方程;

(Ⅱ) 设A, B分别为椭圆的左右顶点, 过点F且斜率为k的直线与椭圆交于C, D两点. 若, 求k的值.

 

查看答案和解析>>

同步练习册答案