【题目】如图,在以为顶点的五面体中,面是边长为3的菱形.
(1)求证:;
(2)若,,,,,求二面角的余弦值.
【答案】(1)见解析(2)
【解析】
(1)由已知条件中的菱形得到线线平行,利用线面平行的判定定理得到线面平行,再由线面平行的性质定理得到线线平行;
(2)建立空间直角坐标系,求出法向量的夹角,得出二面角的大小.
(1)因为是菱形,
所以,
又因为平面,
平面,
所以平面,
又因为平面,
平面平面,
所以.
(2)在中,
根据余弦定理,
因为,,,
所以,
则,
所以,
即.
因为,,
所以.
又因为,
平面,
所以平面.
设中点为,连结,,
因为是菱形,,
所以是等边三角形,
所以,
所以.
作于点,
则,
在中,,
所以.
如图,以为坐标原点,分别以,,为轴,轴,轴正方向,建立空间直角坐标系.
则,,,
,.
设平面的一个法向量为,
因为,
所以,
即,
取,解得,,
此时.
由图可知,平面的一个法向量为,
则,
因为二面角是锐角,所以二面角的余弦值是.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左顶点为,离心率为,点在椭圆上.
(1)求椭圆的方程;
(2)若直线与椭圆交于,两点,直线,分别与轴交于点,,求证:在轴上存在点,使得无论非零实数怎样变化,总有为直角,并求出点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.某环保人士从当地某年的AQI记录数据中,随机抽取了15天的AQI数据,用如图所示的茎叶图记录.根据该统计数据,估计此地该年空气质量为优或良的天数约为__________.(该年为366天)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线: 的焦点为,圆: ,过作垂直于轴的直线交抛物线于、两点,且的面积为.
(1)求抛物线的方程和圆的方程;
(2)若直线、均过坐标原点,且互相垂直, 交抛物线于,交圆于, 交抛物线于,交圆于,求与的面积比的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点,动点满足,的轨迹为曲线.
(1)求曲线的方程;
(2)过定点作直线交曲线于两点.设为坐标原点,若直线与轴垂直,求面积的最大值;
(3)设,在轴上,是否存在一点,使直线和的斜率的乘积为非零常数?若存在,求出点的坐标和这个常数;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点是的顶点,,,直线,的斜率之积为.
(1)求点的轨迹的方程;
(2)设四边形的顶点都在曲线上,且,直线,分别过点,,求四边形的面积为时,直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在圆柱中,点、分别为上、下底面的圆心,平面是轴截面,点在上底面圆周上(异于、),点为下底面圆弧的中点,点与点在平面的同侧,圆柱的底面半径为1,高为2.
(1)若平面平面,证明:;
(2)若直线与平面所成线面角的正弦值等于,证明:平面与平面所成锐二面角的平面角大于.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com