精英家教网 > 高中数学 > 题目详情
已知双曲线的左右焦点分别为为双曲线的中心,是双曲线右支上的点,的内切圆的圆心为,且圆轴相切于点,过作直线的垂线,垂足为,若为双曲线的离心率,则(   )
A.B.
C.D.关系不确定
C

试题分析:设内切圆在上的切点为上的切点为上的切点为的坐标为
,即,延长,∵是角平分线和垂线,∴的中点,的中点,是中位线,,∴,∴.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆上的点到其两焦点距离之和为,且过点
(Ⅰ)求椭圆方程;
(Ⅱ)为坐标原点,斜率为的直线过椭圆的右焦点,且与椭圆交于点,若,求△的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆经过点,离心率为
(1)求椭圆C的方程:
(2)过点Q(1,0)的直线l与椭圆C相交于A、B两点,点P(4,3),记直线PA,PB的斜率分别为k1,k2,当k1·k2最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为椭圆的左、右焦点,且点在椭圆上.
(1)求椭圆的方程;
(2)过的直线交椭圆两点,则的内切圆的面积是否存在最大值?
若存在其最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两个焦点为F1,F2,椭圆上一点M
满足.
(1)求椭圆的方程;
(2)若直线L:y=与椭圆恒有不同交点A,B,且(O为坐标原点),求实数k的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义:对于两个双曲线,,若的实轴是的虚轴,的虚轴是的实轴,则称,为共轭双曲线.现给出双曲线和双曲线,其离心率分别为.
(1)写出的渐近线方程(不用证明);
(2)试判断双曲线和双曲线是否为共轭双曲线?请加以证明.
(3)求值:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,长轴长为,直线交椭圆于不同的两点
(1)求椭圆的方程;
(2)求的取值范围;
(3)若直线不经过椭圆上的点,求证:直线的斜率互为相反数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过点且和抛物线相切的直线方程为                  .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知过抛物线焦点的直线与抛物线相交于两点,若,则    .

查看答案和解析>>

同步练习册答案