精英家教网 > 高中数学 > 题目详情
14.某赛季甲,乙两名篮球运动员每场比赛得分可用茎叶图表示如下:
(1)求甲运动员成绩的中位数;
(2)估计乙运动员在一场比赛中得分落在区间[10,40]内的概率.

分析 (1)求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.
(2)乙运动员共比赛11次,其中9次在区间[10,40]内,故其概率就可以求出.

解答 解:(1)从上到下即是数据从小到大的排列,共13次;最中间的一次成绩,即第7次为36,即中位数是36;
(2)设乙运动员在一场比赛中得分落在区间[10,40]内的概率为p,则其概率为$\frac{9}{11}$.
(1)36;(2)$\frac{9}{11}$.

点评 本题考查使用茎叶图分析数据、处理问题的能力;关键是掌握茎叶图的画法:将所有的两位数的十位数字作为“茎“,个位数字作为“叶“,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出.用到的知识点为:概率=所求情况数与总情况数之比.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列函数是偶函数且值域为[0,+∞)的是(  )
①y=|x|;②y=x3;③y=2|x|;④y=x2+|x|
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若实数x,y满足$\left\{\begin{array}{l}x+y-4≤0\\ 2x-y-4≤0\\ x-y+2≥0\end{array}\right.$,则目标函数z=2x+3y的最大值为(  )
A.11B.24C.36D.49

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=x2+mx+1,若命题“?x0∈R,f(x0)<0”为真,则m的取值范围是(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:π是有理数,命题q:x2-3x+2<0的解集是(1,2).给出下列结论:
(1)命题p∧q是真命题         
(2)命题p∧(¬q)是假命题
(3)命题(¬p)∨q是真命题     
(4)命题(¬p)∨(¬q)是假命题
其中正确的是(  )
A.(1)(3)B.(2)(4)C.(2)(3)D.(1)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为f(x)的上界.已知函数f(x)=x2-4mx+2m+6,g(x)=f(log3x).
(1)若m=1,判断函数g(x)在区间(0,3]上是否为有界函数?若是,写出它的一个上界M的值,若不是,说明理由;
(2)若函数f(x)在[0,3]上是以10为上界的有界函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数$y=\frac{1}{x+1}$的单调递减区间为(-∞,-1)和(-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函教f(x)=2sin(2x-$\frac{π}{3}$).
(1)用”五点法“作出该函数在一个周期内的简图;
(2)求函数f(x)的最大值及取得最大值时自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别为a,b,c,向量$\overrightarrow{m}$=(cosC,sin$\frac{C}{2}$),向量$\overrightarrow{n}$=(sin$\frac{C}{2}$,cosC),且$\overrightarrow{m}∥\overrightarrow{n}$.
(1)求角C的大小;
(2)若a2=2b2+c2,求tanA的值.

查看答案和解析>>

同步练习册答案