精英家教网 > 高中数学 > 题目详情

【题目】已知,点的内心,记,则( )

A. B. C. D.

【答案】D

【解析】

分析:求得△ABC的三个内角的余弦值,求得三角形的面积,设内切圆的半径为r,运用等积法计算可得r,再由向量数量积的定义和余弦定理,计算可得i3<i2<i1

详解:AB=2,BC=3,AC=4,

可得cos∠BAC=

cos∠ABC=

cos∠ACB=

sin∠ACB=

sin∠OAC=sin∠OAB=

sin∠OBC=sin∠OBA=

sin∠OCA=sin∠OCB=

设内切圆的半径为r,

S△ABC=×3×4×=r(2+3+4),

解得r=

| |=

| |=

| |=

=| || |cos∠AOB=(| |2+| |2﹣4)=﹣

═| || ||cos∠COB=(||2+| |2﹣9)=﹣

= || |cos∠COA=(| |2+| |2﹣16)=﹣

i3<i2<i1

故选:D .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题:实数满足,其中;命题:方程表示双曲线.

(1)若,且为真,求实数的取值范围;

(2)若的充分不必要条件,求实数的取值范围.

【答案】(1);(2)

【解析】试题分析:

先由命题解;命题

(1)当,得命题,再由为真,得真且真,即可求解的取值范围.

(2)由的充分不必要条件,则的充分必要条件,根据则 ,即可求解实数的取值范围.

试题解析:

命题:由题得,又,解得

命题 ,解得

(1)若,命题为真时,

为真,则真且真,

解得的取值范围是

(2)的充分不必要条件,则的充分必要条件,

,则

∴实数的取值范围是

型】解答
束】
19

【题目】已知抛物线顶点在原点,焦点在轴上,又知此抛物线上一点到焦点的距离为6.

(1)求此抛物线的方程;

(2)若此抛物线方程与直线相交于不同的两点,且中点横坐标为2,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集为[﹣5,﹣1],求实数a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:实数满足,其中;命题:方程表示双曲线.

(1)若,且为真,求实数的取值范围;

(2)若的充分不必要条件,求实数的取值范围.

【答案】(1);(2)

【解析】试题分析:

先由命题解;命题

(1)当,得命题,再由为真,得真且真,即可求解的取值范围.

(2)由的充分不必要条件,则的充分必要条件,根据则 ,即可求解实数的取值范围.

试题解析:

命题:由题得,又,解得

命题 ,解得

(1)若,命题为真时,

为真,则真且真,

解得的取值范围是

(2)的充分不必要条件,则的充分必要条件,

,则

∴实数的取值范围是

型】解答
束】
19

【题目】已知抛物线顶点在原点,焦点在轴上,又知此抛物线上一点到焦点的距离为6.

(1)求此抛物线的方程;

(2)若此抛物线方程与直线相交于不同的两点,且中点横坐标为2,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的方程为:,直线的方程为.

(1)求证:直线恒过定点;

(2)当直线被圆截得的弦长最短时,求直线的方程;

(3)在(2)的前提下,若为直线上的动点,且圆上存在两个不同的点到点的距离为,求点的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若为偶函数,求的值并写出的增区间;

(Ⅱ)若关于的不等式的解集为,当时,求的最小值;

(Ⅲ)对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C b0)的左、右顶点分别为A1A2,上、下顶点分别为B2B1O为坐标原点,四边形A1B1A2B2的面积为4,且该四边形内切圆的方程为

(Ⅰ)求椭圆C的方程;

(Ⅱ)若MN是椭圆C上的两个不同的动点,直线OMON的斜率之积等于,试探求△OMN的面积是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

①“若的极值点,则”的逆命题为真命题;

②“平面向量的夹角是钝角的充分不必要条件是

③若命题,则

④函数在点处的切线方程为.

其中不正确的个数是

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足: ,其中.

(1)求数列的通项公式;

(2)记数列的前项和为,问是否存在正整数,使得成立?若存在,求的最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案