【题目】已知,,,,点为的内心,记,,,则( )
A. B. C. D.
【答案】D
【解析】
分析:求得△ABC的三个内角的余弦值,求得三角形的面积,设内切圆的半径为r,运用等积法计算可得r,再由向量数量积的定义和余弦定理,计算可得i3<i2<i1.
详解:AB=2,BC=3,AC=4,
可得cos∠BAC=,
cos∠ABC= ,
cos∠ACB=
sin∠ACB=,
sin∠OAC=sin∠OAB=,
sin∠OBC=sin∠OBA=,
sin∠OCA=sin∠OCB= ,
设内切圆的半径为r,
则S△ABC=×3×4×=r(2+3+4),
解得r=,
| |= ,
| |=,
| |=,
由=| || |cos∠AOB=(| |2+| |2﹣4)=﹣,
═| || ||cos∠COB=(||2+| |2﹣9)=﹣,
= || |cos∠COA=(| |2+| |2﹣16)=﹣,
则i3<i2<i1,
故选:D .
科目:高中数学 来源: 题型:
【题目】已知命题:实数满足,其中;命题:方程表示双曲线.
(1)若,且为真,求实数的取值范围;
(2)若是的充分不必要条件,求实数的取值范围.
【答案】(1);(2).
【解析】试题分析:
先由命题解得;命题得,
(1)当,得命题,再由为真,得真且真,即可求解的取值范围.
(2)由是的充分不必要条件,则是的充分必要条件,根据则 ,即可求解实数的取值范围.
试题解析:
命题:由题得,又,解得;
命题: ,解得.
(1)若,命题为真时, ,
当为真,则真且真,
∴解得的取值范围是.
(2)是的充分不必要条件,则是的充分必要条件,
设, ,则 ;
∴∴实数的取值范围是.
【题型】解答题
【结束】
19
【题目】已知抛物线顶点在原点,焦点在轴上,又知此抛物线上一点到焦点的距离为6.
(1)求此抛物线的方程;
(2)若此抛物线方程与直线相交于不同的两点、,且中点横坐标为2,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集为[﹣5,﹣1],求实数a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题:实数满足,其中;命题:方程表示双曲线.
(1)若,且为真,求实数的取值范围;
(2)若是的充分不必要条件,求实数的取值范围.
【答案】(1);(2).
【解析】试题分析:
先由命题解得;命题得,
(1)当,得命题,再由为真,得真且真,即可求解的取值范围.
(2)由是的充分不必要条件,则是的充分必要条件,根据则 ,即可求解实数的取值范围.
试题解析:
命题:由题得,又,解得;
命题: ,解得.
(1)若,命题为真时, ,
当为真,则真且真,
∴解得的取值范围是.
(2)是的充分不必要条件,则是的充分必要条件,
设, ,则 ;
∴∴实数的取值范围是.
【题型】解答题
【结束】
19
【题目】已知抛物线顶点在原点,焦点在轴上,又知此抛物线上一点到焦点的距离为6.
(1)求此抛物线的方程;
(2)若此抛物线方程与直线相交于不同的两点、,且中点横坐标为2,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆的方程为:,直线的方程为.
(1)求证:直线恒过定点;
(2)当直线被圆截得的弦长最短时,求直线的方程;
(3)在(2)的前提下,若为直线上的动点,且圆上存在两个不同的点到点的距离为,求点的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(Ⅰ)若为偶函数,求的值并写出的增区间;
(Ⅱ)若关于的不等式的解集为,当时,求的最小值;
(Ⅲ)对任意的,,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (>b>0)的左、右顶点分别为A1、A2,上、下顶点分别为B2、B1,O为坐标原点,四边形A1B1A2B2的面积为4,且该四边形内切圆的方程为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若M、N是椭圆C上的两个不同的动点,直线OM、ON的斜率之积等于,试探求△OMN的面积是否为定值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①“若为的极值点,则”的逆命题为真命题;
②“平面向量的夹角是钝角”的充分不必要条件是
③若命题,则
④函数在点处的切线方程为.
其中不正确的个数是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列和满足:, ,,其中.
(1)求数列和的通项公式;
(2)记数列的前项和为,问是否存在正整数,使得成立?若存在,求的最小值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com