精英家教网 > 高中数学 > 题目详情
在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为A1D1和CC1的中点
(1)求证:EF∥平面A1C1B;
(2)求异面直线EF与AB所成角的余弦值.
分析:(1)建立坐标系,取BC1中点G,证明
EF
A1G
共线,可得EF∥A1G,即可证明EF∥平面A1C1B;
(2)求出两异面直线的方向向量,用数量积公式求夹角余弦即可.
解答:(1)证明:如图分别以DA、DC、DD1所在的直线为x轴、y轴、z轴建立空间直角坐标系D-xyz,由已知得D(0,0,0)、A1(2,0,2)、B(2,2,0)、A(2,0,0)、C(0,2,0)、C1(0,2,2)、D1(0,0,2)、E(1,0,2)、F(0,2,1).
取BC1中点G,则G(1,2,1),
A1G
=(-1,2,-1),
EF
=(-1,2,-1),∴
EF
=
A1G

EF
A1G
共线,∴EF∥A1G,
∵A1G?平面A1C1B,EF?平面A1C1B,
∴EF∥平面A1C1B;
(2)解:∵
AB
=(0,2,0),
EF
=(-1,2,-1),
∴cos<
EF
AB
>=
AB
EF
|
AB
||
EF
|
=
4
2
6
=
6
3

∴异面直线EF与AB所成角的余弦值为
6
3
点评:本题考查用向量法证明线面平行,求异面直线所成的角,用向量方法解决立体几何中的位置关系、夹角及距离问题是空间向量的一个重要运用,学习时注意总结向量法解立体几何题的规律,此方法也是近几年高考比较热的一个考点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点,那么异面直线OE和FD1所成的角的余弦值等于(  )
A、
10
5
B、
15
5
C、
4
5
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为2的正方体AC1中,G是AA1的中点,则BD到平面GB1D1的距离是(  )
A、
6
3
B、
2
6
3
C、
2
3
3
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)如图,在棱长为1的正方体A'C中,过BD及B'C'的中点E作截面BEFD交C'D'于F.
(1)求截面BEFD与底面ABCD所成锐二面角的大小;
(2)求四棱锥A'-BEFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•上海)如图,在棱长为2的正方体ABCD-A'B'C'D'中,E,F分别是A'B'和AB的中点,求异面直线A'F与CE所成角的大小 (结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源:黑龙江省鹤岗一中2010-2011学年高一下学期期末考试数学理科试题 题型:013

在棱长为2的正方体A中,点E,F分别是棱AB,BC的中点,则点到平面EF的距离是

[  ]

A.

B.

C.

D.

查看答案和解析>>

同步练习册答案