精英家教网 > 高中数学 > 题目详情

【题目】直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为:,倾斜角为锐角的直线l过点与单位圆相切.

1)求曲线C的直角坐标方程和直线l的参数方程;

2)设直线l与曲线C交于AB两点,求的值.

【答案】(1);(2.

【解析】

(1)已知条件化简,利用极坐标和直角坐标的互化公式即可得出结果,由倾斜角为锐角的直线l过点与单位圆相切,可得l的倾斜角为,根据直线参数方程的定义即可得出结果.

(2)将直线参数方程和曲线的普通方程联立,利用直线方程中参数的几何意义,可知,借助韦达定理即可得出结果.

1

即曲线C的直角坐标方程为.

又依题意易得直线l的倾斜角为,所以直线l的参数方程为:

2)将代入中,整理得

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国是全球最大的口罩生产国,在20203月份,我国每日口罩产量超一亿只,已基本满足国内人民的需求,但随着疫情在全球范围扩散,境外口罩需求量激增,世界卫生组织公开呼吁扩大口罩产能常见的口罩有(分别阻挡不少于90.0%95.0%0.0550.095微米的氯化钠颗粒)两种,某口罩厂两条独立的生产线分别生产两种口罩,为保证质量对其进行多项检测并评分(满分100分),规定总分大于或等于85分为合格,小于85分为次品,现从流水线上随机抽取这两种口罩各100个进行检测并评分,结果如下:

总分

6

14

42

31

7

4

6

47

35

8

1)试分别估计两种口罩的合格率;

2)假设生产一个口罩,若质量合格,则盈利3元,若为次品则亏损1元;生产一个口罩,若质量合格,则盈利8元,若为次品则亏损2元,在(1)的前提下,

①设为生产一个口罩和生产一个口罩所得利润的和,求随机变量的分布列和数学期望;

②求生产4口罩所得的利润不少于8元的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=2,AB//DC,AB=2CD,∠BCD=90°.

(1)求证:AD⊥PB;

(2)求点C到平面PAB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了引导居民合理用电,国家决定实行合理的阶梯电价,居民用电原则上以住宅为单位(一套住宅为一户).

阶梯级别

第一阶梯

第二阶梯

第三阶梯

月用电范围(度)

(0,210]

(210,400]

某市随机抽取10户同一个月的用电情况,得到统计表如下:

居民用电户编号

1

2

3

4

5

6

7

8

9

10

用电量(度)

53

86

90

124

132

200

215

225

300

410

若规定第一阶梯电价每度0.5元,第二阶梯超出第一阶梯的部分每度0.6元,第三阶梯超出第二阶梯的部分每度0.8元,试计算A居民用电户用电410度时应电费多少元?

现要在这10户家庭中任意选取3户,求取到第二阶梯电量的户数的分布列与期望;

以表中抽到的10户作为样本估计全市的居民用电,现从全市中依次抽取10户,若抽到户用电量为第一阶梯的可能性最大,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为:,倾斜角为锐角的直线l过点与单位圆相切.

1)求曲线C的直角坐标方程和直线l的参数方程;

2)设直线l与曲线C交于AB两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F1为椭圆1ab0)的左焦点,在椭圆上,PF1x.

1)求椭圆的方程;

2)已知直线lykx+m与椭圆交于(12),B两点,O为坐标原点,且OAOBO到直线l的距离是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某生物兴趣小组对冬季昼夜温差与反季节新品种大豆发芽数之间的关系进行研究,他们分别记录了日至1125日每天的昼夜温差与实验室每天100颗种子的发芽数,得到以下表格

日期

1121

1122

11月23日

11月24日

11月25日

温差()

8

9

11

10

7

发芽数()

22

26

31

27

19

该兴趣小组确定的研究方案是:先从这5组数据中选取2组数据,然后用剩下的3组数据求线性回归方程,再用被选取的组数据进行检验.

1)求统计数据中发芽数的平均数与方差;

2)若选取的是1121日与1125日的两组数据,请根据1122 日至1124 日的数据,求出发芽数关于温差的线性回归方程,若由线性回归方程得到的估计数据与所选取的检验数据的误差不超过2,则认为得到的线性回归方程是可靠的,问得到的线性回归方程是否可靠?

附:线性回归方程 中斜率和截距最小二乘估法计算公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,P是侧面上的动点,垂直,则直线与直线AB所成角的正弦值的最小值是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中, 平面 的中点, 在线段上,且满足.

(1)求证: 平面

(2)求二面角的余弦值;

(3)在线段上是否存在点,使得与平面所成角的余弦值是,若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案