精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2+bx-1满足以下两个条件:
①函数f(x)的值域为[-2,+∞);
②任意x∈R,恒有f(-1+x)=f(-1-x)成立.
(1)求f(x)的解析式;
(2)设F(x)=f(-x)-kf(x),若F(x)在[-2,2]上是减函数,求实数k的取值范围.
分析:(1)由已知条件可知:函数f(x)有最小值-2=
-4a-b2
4a
,a>0;其函数图象关于直线x=-1对称,即-1=-
b
2a
,解出即可;
(2)利用导数对k分类讨论即可求出.
解答:解:(1)由函数f(x)=ax2+bx-1满足以下两个条件:
①函数f(x)的值域为[-2,+∞);②任意x∈R,恒有f(-1+x)=f(-1-x)成立.
所以可知:函数f(x)有最小值-2=
-4a-b2
4a
,a>0;其函数图象关于直线x=-1对称,即-1=-
b
2a

联立
-2=
-4a-b2
4a
a>0
-1=-
b
2a
,解得
a=1
b=2

∴f(x)=x2+2x-1.
(2)解:由(1)可知:F(x)=(1-k)x2-2(1+k)x+k-1.
当k=1时,F(x)=-4x在[-2,2]上是减函数,故k=1满足条件.
当k≠1时,F(x)=2(1-k)x-2(1+k)=2(1-k)(x-
1+k
1-k
)

当满足
k>1
-2≥
1+k
1-k
时,即1<x≤3时,F(x)在[-2,2]上单调递减;
当满足
k<1
2≤
1+k
1-k
时,即
1
3
≤k<1
时,F(x)在[-2,2]上单调递减;
综上可知:实数k的取值范围是
1
3
≤k≤3
点评:充分利用二次函数的单调性、对称性和导数解决函数的单调性是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案