【题目】等差数列{an}前n项和为Sn , 已知(a2﹣2)3+2013(a2﹣2)=sin ,(a2013﹣2)3+2013(a2013﹣2)=cos ,则S2014= .
【答案】4028
【解析】解:(a2﹣2)3+2013(a2﹣2)=sin = ,① (a2013﹣2)3+2013(a2013﹣2)=cos =﹣ ,②
①+②得,
(a2﹣2)3+2013(a2﹣2)+(a2013﹣2)3+2013(a2013﹣2)=0,
即(a2﹣2+a2013﹣2)[(a2﹣2)2﹣(a2﹣2)(a2013﹣2)+(a2013﹣2)2]+2013(a2﹣2+a2013﹣2)=0,
∴a2﹣2+a2013﹣2=0,
即a2+a2013=4,
∴S2014= =1007×(a2+a2013)=4028,
所以答案是:4028.
【考点精析】通过灵活运用等差数列的性质,掌握在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数 (m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为( )
A.a<b<c
B.b<a<c
C.c<a<b
D.a<c<b
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商品最近30天的价格f(t)(元)与时间t满足关系式:f(t)= ,且知销售量g(t)与时间t满足关系式 g(t)=﹣t+30,(0≤t≤30,t∈N+),求该商品的日销售额的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}.
(1)当m=3时,求集合A∩B,A∪B;
(2)若BA,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边长分别是a,b,c.满足2acosC+ccosA=b.
(Ⅰ)求角C的大小;
(Ⅱ)求sinAcosB+sinB的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)请在直角坐标系中画出函数f(x)的图象,并写出该函数的单调区间;
(2)若函数g(x)=f(x)﹣m恰有3个不同零点,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数其中实数为常数且.
(I)求函数的单调区间;
(II)若函数既有极大值,又有极小值,求实数的取值范围及所有极值之和;
(III)在(II)的条件下,记分别为函数的极大值点和极小值点,
求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com