精英家教网 > 高中数学 > 题目详情
若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”.已知函数解析式为f(x)=2x2+1,值域为{1,5,19}的“孪生函数”共有
 
个.
分析:根据题意,分析可得:所谓的“孪生函数”就是利用相同的函数值和相同的解析式解一个方程即可.即分别令2x2+1=5,2x2+1=19,使得函数值为5的有三种情况,最后结合乘法原理即可.
解答:解:令2x2+1=5得x=±
2
,令2x2+1=19得x=±3,使得函数值为5的有三种情况,
即x=-
2
2
,±
2
,使得函数值为19的也有三种情况,即x=3,-3,±3,
则“孪生函数”共有3×3=9个.
故答案为:9
点评:新定义问题一般都是表面翻新,但解决问题的知识点不变,解决新定义问题的关键就是读懂定义,考查的是学生对知识应变迁移能力.属于中低档题较多.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

150、若一系列函数的解析式和值域相同,但定义域互不相同,则称这些函数为“同族函数”.例如函数y=x2,x∈[1,2]与y=x2,x∈[-2,-1]即为“同族函数”、下面6个函数:①y=tanx;②y=cosx;③y=x3;④y=2x;⑤y=lgx;⑥y=x4.其中能够被用来构造“同族函数”的有
①②⑥

查看答案和解析>>

科目:高中数学 来源: 题型:

若一系列函数的解析式相同,值域相同,但其定义域不同,则称这一系列函数为“同族函数”,试问解析式为y=x2,值域为{1,2}的“同族函数”共有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同效函数”,例如函数y=x2,x∈[1,2]与函数y=x2,x∈[-2,-1]即为“同效函数”.请你找出下面函数解析式中能够被用来构造“同效函数”的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y=2x2-1,值域为{1,7}的“孪生函数”共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•湖北模拟)若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如解析式为y=2x2+1,值域为{9}的“孪生函数”三个:
(1)y=2x2+1,x∈{-2};(2)y=2x2+1,x∈{2};(3)y=2x2+1,x∈{-2,2}.
那么函数解析式为y=2x2+1,值域为{1,5}的“孪生函数”共有(  )

查看答案和解析>>

同步练习册答案