精英家教网 > 高中数学 > 题目详情

【题目】近五年来某草场羊只数量与草场植被指数两变量间的关系如表所示,绘制相应的散点图,如图所示:

年份

1

2

3

4

5

羊只数量(万只)

1.4

0.9

0.75

0.6

0.3

草地植被指数

1.1

4.3

15.6

31.3

49.7

根据表及图得到以下判断:①羊只数量与草场植被指数成减函数关系;②若利用这五组数据得到的两变量间的相关系数为,去掉第一年数据后得到的相关系数为,则;③可以利用回归直线方程,准确地得到当羊只数量为2万只时的草场植被指数;以上判断中正确的个数是(

A.0B.1C.2D.3

【答案】B

【解析】

根据两组数据的相关性,对题中三个命题分别判断即可.

对于①,羊只数量与草场植被指数成负相关关系,不是减函数关系,∴①错误;

对于②,用这五组数据得到的两变量间的相关系数为,∵第一组数据是离群值,去掉后得到的相关系数为,其相关性更强,∴,②正确;

对于③,利用回归直线方程,不能准确地得到当羊只数量为2万只时的草场植被指数,只是预测值,∴③错误;

综上可知正确命题个数是1.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:

(1)求这100件产品质量指标值的样本平均数和样本方差(同一组的数据用该组区间的中点值作为代表);

(2)由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数近似为样本方差

(i)若某用户从该企业购买了10件这种产品,记表示这10件产品中质量指标值位于(187.4,225.2)的产品件数,求

(ii)一天内抽取的产品中,若出现了质量指标值在之外的产品,就认为这一天的生产过程中可能出现了异常情况,需对当天的生产过程进行检查下。下面的茎叶图是检验员在一天内抽取的15个产品的质量指标值,根据近似值判断是否需要对当天的生产过程进行检查。

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;

将日均收看该体育节目时间不低于40分钟的观众称为体育迷,已知体育迷中有10名女性.

(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否认为体育迷与性别

有关?


非体育迷

体育迷

合计









合计




(Ⅱ)将日均收看该体育项目不低于50分钟的观众称为超级体育迷,已知超级体育迷中有2名女性,若从超级体育迷中任意选取2人,求至少有1名女性观众的概率.


0.05

0.01

k

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平行志愿投档录取模式是高考志愿的一种新方式,2008年教育部在6个省区实行平行志愿投档录取模式的试点改革.一年的实践证叨,实行平行志愿投档录取模式,有效降低了考生志愿填报风险.平行志愿是这样规定:在同一批次设置几个志愿,当考生分数达到这几个学校提档线时,本批次的志愿依次检索录取.某考生根据对自己的高考分数和对往年学校录取情况分析,从报考指南中选择了10所学校,作出如下表格:

学校

专业

数学系

计算机系

物理系

录取概率

0.5

0.5

0.6

0.9

0.5

0.7

0.8

0.7

0.8

0.9

1)该考生从上表中的10所学校中选择4所学校填报,记为选择的4所学校中报数学系专业的个数,求的分布列及其期望

2)若该考生选择了4个学校在同一批次填报志愿,填报志愿表如下,如果仅以该考生对自己分析的录取概率为依据,当改变这4个志愿填报的顺序时,是否改变他本批次录取的可能性?请说明理由.

志愿

学校

第一志愿

第二志愿

第三志愿

第四志愿

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甘肃省是土地荒漠化较为严重的省份,一代代治沙人为了固沙、治沙,改善生态环境,不断地进行研究与实践,实现了沙退人进.2019年,古浪县八步沙林场“六老汉”三代人治沙群体作为优秀代表,被中宣部授予“时代楷模”称号.在治沙过程中为检测某种固沙方法的效果,治沙人在某一实验沙丘的坡顶和坡腰各布设了50个风蚀插钎,以测量风蚀值(风蚀值是测量固沙效果的指标之一,数值越小表示该插钎处被风吹走的沙层厚度越小,说明固沙效果越好,数值为0表示该插针处没有被风蚀)通过一段时间的观测,治沙人记录了坡顶和坡腰全部插钎测得的风蚀值(所测数据均不为整数),并绘制了相应的频率分布直方图.

(Ⅰ)根据直方图估计“坡腰处一个插钎风蚀值小于30”的概率;

(Ⅱ)若一个插钎的风蚀值小于30,则该数据要标记“*”,否则不标记.根据以上直方图,完成列联表:

标记

不标记

合计

坡腰

坡顶

合计

并判断是否有的把握认为数据标记“*”与沙丘上插钎所布设的位置有关?

(Ⅲ)坡顶和坡腰的平均风蚀值分别为,若,则可认为此固沙方法在坡顶和坡腰的固沙效果存在差异,试根据直方图计算(同一组中的数据用该组区间的中点值为代表),并判断该固沙方法在坡顶和坡腰的固沙效果是否存在差异.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)当时,求曲线在点处的切线方程;

)若,讨论函数的单调性与单调区间;

)若有两个极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自湖北爆发新型冠状病毒肺炎疫情以来,湖北某市医护人员和医疗、生活物资严重匮乏,全国各地纷纷驰援.某运输队接到从武汉送往该市物资的任务,该运输队有8辆载重为6tA型卡车,6辆载重为10tB型卡车,10名驾驶员,要求此运输队每天至少运送240t物资.已知每辆卡车每天往返的次数为A型卡车5次,B型卡车4次,每辆卡车每天往返的成本A型卡车1200元,B型卡车1800元,则每天派出运输队所花的成本最低为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数ab满足a2+b2-ab3

1)求a-b的取值范围;

2)若ab0,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数在点处的切线方程;

2)设函数上有且只有一个零点,求的取值范围.(其中为自然对数的底数)

查看答案和解析>>

同步练习册答案