精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线,点M(m, 0)在x轴的正半轴上,过M点的直线与抛物线 C相交于A,B两点,O为坐标原点.

(1) 若m=l,且直线的斜率为1,求以AB为直径的圆的方程;

(2) 是否存在定点M,使得不论直线绕点M如何转动, 恒为定值?

【答案】(1). (2)存在定点M(2, 0).

【解析】试题分析:(I)由题意得M(1,0),直线l的方程为y=x﹣1与抛物线方程联立,利用韦达定理,可得圆心坐标与圆的半径,从而可得圆的方程;

(II)若存在这样的点M,使得为定值,直线l:x=ky+m与抛物线方程联立,计算|AM||BM|,利用恒为定值,可求点M的坐标.

试题解析:

(1)当m=1时,M(1,0),此时,点M为抛物线C的焦点,

直线的方程为y=x-1,设,联立

消去y得, ,∴

∴圆心坐标为(3, 2).

,∴圆的半径为4,

∴圆的方程为.

(2)由题意可设直线的方程为,则直线的方程与抛物线联立,

消去x得: ,则

对任意恒为定值,

于是m=2,此时.

∴存在定点M(2, 0),满足题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数学名著《算学启蒙》中有如下问题:“松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.”如图是源于其思想的一个程序框图,若输入的a,b的值分别为16,4,则输出的n的值为(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(x-1)3-ax-b,x∈R,其中a,b∈R。
(1)求f(x)的单调区间;
(2)若f(x)存在极点x0 , 且f(x1)=f(x0),其中x1x0 , 求证:x1+2x0=3;
(3)设a>0,函数g(x)=∣f(x)∣,求证:g(x)在区间[0,2]上的最大值不小于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线=的焦点为坐标原点, 是抛物线上异于的两点.

(1)求抛物线的方程;

(2)若直线的斜率之积为,求证:直线轴上一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,为曲线所在圆锥曲线的焦点,

(1),求曲线的方程;

(2)如图,作直线平行于曲线的渐近线,交曲线于点,

求证:的中点必在曲线的另一条渐近线上;

(3)对于(1)中的曲线,若直线过点交曲线于点,面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程
在直线坐标系xoy中,圆C的方程为(x+6)2+y2=25.
(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(2)直线l的参数方程是 t为参数),lC交于AB两点,∣AB∣= ,求l的斜率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)的部分图象如图所示.

(1)f(x)的最小正周期及解析式;

(2)设函数g(x)=f(x)-cos 2x,g(x)在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cosx(sinx-cosx)+m(m∈R),将y=f(x)的图象向左平移 个单位后得到g(x)的图象,且y=g(x)在区间[]内的最小值为

(1)求m的值;

(2)在锐角△ABC中,若g( )=,求sinA+cosB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2 ,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是(  )
A.内切
B.相交
C.外切
D.相离

查看答案和解析>>

同步练习册答案